
Introductory Course to

MATLAB with Financial

Case Studies
Panayiotis C. Andreou, PhD

December 2014

i

Table of Contents

1 Introduction ___ 1

1.1 Learning Matlab ___ 1

1.2 Basic Definitions ___ 3

1.3 Information of How to Read This Handout_________________________ 5

1.4 Starting Up Matlab ___ 6

1.5 Matlab’s Windows __ 7

1.5.1 Command Window - Matlab as a Calculator ___________________ 9

1.5.1.1 Controlling Command Window Input and Output _______ 14

1.5.2 Editor / Debugger ___ 17

1.5.3 Help Options __ 18

2 Manipulating Vectors and Matrices _________________________________ 20

2.1 Row Vectors ___ 20

2.1.1 The Colon Notation __ 23

2.1.2 Column Vectors __ 24

2.1.3 Transporting Vectors _______________________________________ 25

2.1.4 Vector Manipulations Related to Products, Division, and Powers

 ___ 27

2.1.4.1 Scalar Product ___ 27

2.1.4.2 Dot Product __ 28

2.1.4.3 Dot Division and Power ________________________________ 29

2.1.4.4 Some Useful Vector Function ___________________________ 31

2.2 Two Dimensional Arrays (Matrices) _____________________________ 33

2.2.1 Transpose of a Matrix ______________________________________ 35

2.2.2 Elaborating on Parts of Matrices - The Colon Notation _______ 36

2.2.3 Matrix Basic Manipulations ________________________________ 40

2.2.4 Matrix Manipulations Related to Products, Division, and Powers

ii

 ___ 40

2.2.4.1 Matrix Dot Product, Division and Powers ________________ 40

2.2.4.2 Matrix to Vector Product - Matrix to Matrix Product _____ 41

2.2.5 Special Cases of Matrices ___________________________________ 43

2.2.6 Additional Useful Matrix Function __________________________ 44

2.2.7 Example: System of Linear Equations _______________________ 44

3 Plots and Graphs (2D and 3D) _____________________________________ 47

3.1 Creating 2D Line Plots ___ 47

3.1.1 Plot Edit Mode ___ 48

3.1.2 Function and Style Facilities Related to Plots ________________ 50

3.2 Creating 3D Graphs __ 55

3.2.1 Creation of 3D Line Plots ___________________________________ 55

3.2.2 Creation of 3D Mesh and Surface Graphs ___________________ 55

3.2.2.1 Examination of a Function’s Critical Points _____________ 60

4 Control Flow __ 63

4.1 Logical and Relational Operators _______________________________ 63

4.1.1 The any and all Function ___________________________________ 66

4.2 Conditional Statements __ 66

4.2.1 The if Statement ___ 67

4.2.2 The switch Statement ______________________________________ 68

4.3 Loop Expressions __ 69

4.3.1 The for Loop ___ 69

4.3.2 The while Loop ___ 70

4.3.3 Nested Conditional and Loop Expressions ___________________ 70

4.3.4 Additional Control Flow Statements _________________________ 71

5 m-files: Scripts and Function ______________________________________ 73

5.1 m-files: Function ___ 73

5.1.1 Basic Parts of a Function ___________________________________ 75

5.1.1.1 Function Definition Line________________________________ 75

iii

5.1.1.2 The H1 Line ___ 76

5.1.1.3 The Help Text __ 77

5.1.1.4 The Body Text ___ 77

5.2 Scripts __ 78

5.3 Testing and Debugging ___ 80

5.3.1 Code Sections __ 81

5.3.2 Debugging ___ 83

6 Cells and Structures ___ 86

6.1.1 Cell indexing ___ 87

6.1.2 Content indexing ___ 88

6.2 Structures ___ 90

6.2.1 Building structure arrays using assignment statements _____ 90

6.2.2 Building structure arrays using the struct function _________ 92

7 Entering and Saving Data Files ____________________________________ 95

7.1 Import Data Interactively _______________________________________ 95

7.2 Import Data using build-in functions ___________________________ 98

8 Data Analysis __ 100

8.1 Descriptive statistics __ 100

8.2 Statistical plots ___ 102

8.3 Statistical Tests ___ 104

8.4 Regression Analysis ___ 106

8.4.1 Linear Regression - ordinary least squares (OLS) ___________ 107

8.4.2 Logistic Regression __ 111

9 Case Studies ___ 114

9.1 The Black - Scholes- Merton Options Pricing Formula __________ 114

9.1.1 Implementation of the BSM Formula _______________________ 115

9.1.2 BSM Derivatives __ 116

9.1.3 BSM Plots and Surfaces ___________________________________ 117

9.1.4 BSM Implied Volatility ____________________________________ 118

iv

9.2 Function Minimization and Plots ______________________________ 120

9.3 Portfolio Optimization ___ 126

References __ 131

v

List of Figures

Figure 1: The Matlab desktop ___ 7

Figure 2: The Matlab Workspace Browser _________________________________ 8

Figure 3: A basic calculation ___ 9

Figure 4: A four-element vector ___ 10

Figure 5: A 3-by-3 magic table __ 11

Figure 6: A 2-element vector __ 12

Figure 7: Matlab’s Editor/Debugger ____________________________________ 18

Figure 8: The figure window __ 49

Figure 9: An example of a Function _____________________________________ 74

Figure 10: Function Definition Line _____________________________________ 75

Figure 11: An example of a script _______________________________________ 79

Figure 12: Warnings indication ___ 81

Figure 13: Script with code sections ____________________________________ 82

Figure 14: Increment Value dialog box __________________________________ 82

Figure 15: Variables Editor ___ 84

Figure 16: A 2-by-2 cell array ___ 86

Figure 17: Example of stricter (Figure copied from [2]) __________________ 90

Figure 18: The import tool __ 96

Figure 19: Importing choces __ 97

Figure 20: Automatically generated function for importing data __________ 97

Figure 21: Browsing through data import functions in the command window.

 ___ 99

Figure 22: Script for generating descriptive statistics ___________________ 101

Figure 23: Plotting Histograms output _________________________________ 103

Figure 24: Linear Regression example script using regress and regstats

functions ___ 108

Figure 25: Code section for performing linear regression using fitlm _____ 110

Figure 26: Code section to create Fixed Effects Variables _______________ 110

Figure 27: Code section for performing linear regression using fixed effects

with fitlm function __ 111

Figure 28: Code Section for performing logistic regression ______________ 112

vi

List of Tables

Table 1: The elementary build-in function _______________________________ 13

Table 2: Various function that can be used with vectors _________________ 32

Table 3: Various function that can be used with vectors. ________________ 43

Table 4: Various function that can be used with vectors. ________________ 44

Table 5: Plot colour and line styles ______________________________________ 50

Table 6: Various functions that help in the creation of 2D-plots. _________ 50

Table 7: The if statement syntax and examples __________________________ 67

Table 8: The switch statement syntax and example. _____________________ 68

Table 9: The for statement syntax and example. _________________________ 69

Table 10: The while statement syntax and example. _____________________ 70

Table 11: Nested conditional and loop statements. ______________________ 71

Table 12: Additional control flow statements. ____________________________ 71

Table 13: File formats that Matlab can handle ___________________________ 98

Table 14: Functions for descriptive statistics ___________________________ 100

Table 15: Functions for Statistical Plotting _____________________________ 102

Table 16: List of Statistical tests when to be used and the corresponding

Matlab function ___ 105

Table 17: Fields of the ouput structure of function regstats _____________ 109

Table 18: Fields of the structure LogicStat _____________________________ 113

1

1 Introduction

This hand-out demonstrates a comprehensive introduction to the basic

utilities of a high technical programming language encapsulated under the

computing environment of Matlab. It was prepared based on version 8.4

Release 2014a, but since it does not have many differences from previous

ones, it can also operate for older versions as well. Upon reading it, you will

be in a position to create programming code to solve elementary (or even

intermediate) financial problems.

1.1 Learning Matlab

Matlab (the name stands for: Matrix Laboratory) is a high performance

programming language and a computing environment that uses vectors and

matrices as one of its basic data types (MATLAB® is a registered trademark

of the MathWorks, Inc.). It is a powerful tool for mathematical and technical

calculations and it can also be used for creating various types of plots. It

performs the basic function of a programmable calculator whereas someone

can write, run/execute and save a bundle of commands. In the last few

years, Matlab has become very popular because it enables numerous ways

to solve various problems numerically via a user-friendly programming

language. It is particularly easy to generate a programming code, execute it

to get the desire solution, draw some relevant graphs and look at the

interesting features of the problem under consideration. What makes Matlab

so convenient to many fields (including finance) is that it integrates

computation, visualization and programming in an easy to use environment.

Just for historical purposes, the first version of Matlab was written in 1970s

by a numerical analyst names Cleve Moler, and since then has become a

successful retail product.

Matlab features a family of add-on application-specific solutions called

toolboxes. A toolbox is a comprehensive collection of Matlab functions (M-

files) that extend the Matlab environment to solve particular classes of

problems. For example, the Financial Toolbox includes ready to use

functions that provide a complete integrated computing environment for

2

financial analysis and engineering. The toolbox has everything you need to

perform mathematical and statistical analysis of financial data and display

the results with presentation-quality graphics. With MATLAB and the

Financial Toolbox, you can: compute and analyse prices, yields, and

sensitivities for derivatives and other securities, and for portfolios of

securities; analyse or manage portfolios; perform asset pricing exercises;

design and evaluate hedging strategies and many more.

This hand-out is about a brief introductory course in the most important

parts of Matlab. After finishing this, you will be able to:

i. Utilize the basic mathematical operations;

ii. Get know the general purpose commands of Matlab;

iii. Become familiar with some of the elementary function, matrix and

numerical linear algebra function, as well as some graphic and

plot commands;

iv. Manipulate matrices (i.e. create and edit vectors and matrices,

build a larger matrix from a smaller one, etc);

v. Learn how to use the relational operators (<, >, <=, >=, ==, ~=) and

logical operators (&& AND, || OR, ~ NOT);

vi. Recognize build-in variables, define new ones and performing

computations with them;

vii. Learn how to use if and switch statements;

viii. Learn how to correctly utilize loop commands, such as the for

loop, and the while loop;

ix. Write and edit your own m-files and function for solving a specific

problem;

x. ...Numerous other utilities and uses depending on your will to learn

and utilize this technical language.

It is better to use this hand-out in direct use with the Matlab. It will be more

beneficial if while reading these notes you sit in front of a PC and type the

various commands and execute the given examples.

Although the Matlab package includes extensive help facilities that can be

viewed via a very user-friendly Help Browser, if it is needed, you can also

3

find additional online (through Internet) help at the following electronic

address:

http://www.mathworks.com/access/helpdesk/help/helpdesk.shtml

Moreover, various download, trials and the Matlab Central File Exchange

that contains hundreds of files contributed by users and developers of

Matlab and related products can be found at:

http://www.mathworks.com/matlabcentral/fileexchange/

Additionally, any function that have been created for examples and all those

that are needed to work with the case studies are located in the folder

named as: Matlab Examples on my personal website here:

http://www.pandreou.com/miscellaneous.php

1.2 Basic Definitions

Before moving to the introduction of issues specific to Matlab, some very

basic definitions on computers and programming should be set forth. These

include:

General [1]

 bit (short for binary digit) is the smallest unit of information on a

computer. A single bit can hold only one of two values: 0 or 1. More

meaningful information is obtained by combining consecutive bits

into larger units, such as byte.

 byte consists a unit of 8 bits and is capable to hold a single

character. Large amounts of memory are indicated in terms of

kilobytes (1024 bytes), megabytes (1024 kilobytes), and gigabytes

(1024 megabytes).

 data is information represented with symbols such as numbers,

words, images, etc.

 command is a collection of programming words that instruct the

computer to do a specific task.

 algorithm is a set of commands that aim to solve a predetermined

http://www.mathworks.com/access/helpdesk/help/helpdesk.shtml
http://www.mathworks.com/matlabcentral/fileexchange/
http://www.pandreou.com/miscellaneous.php

4

problem.

 program is the implementation of the algorithm suitable for execution

by a computer.

 variable is a container that can hold a value. For example, in the

expression: , both and are variables. Variables can hold both z+a z a

numerical data (e.g. 10, 98.5) and characters or strings (e.g. 'd' or

'dubs').

 constant is a value that never changes. It can be a numeric, a

character or a string.

 bug is an error in a program, causing the program to stop running,

not to run at all or to provide wrong results. Some bugs can be very

subtle and hard to find. The process of finding and removing the bugs

is called debugging.

Matlab Specific [2]

 workspace is the memory allocated to Matlab and is used to

temporarily store variables.

 m-file is a file that contains Matlab’s language code. m-files can be

function that accept arguments and produce output, or they can be

scripts that execute a series of Matlab statements. For Matlab to

recognize a file as an m-file, its file name extension must be “.m”.

 function are m-files that can accept input arguments and return

output arguments. The name of the m-file and the calling syntax

name of the function should be the same. Functions operate on

variables within their own workspace, separate from the workspace

you access at the Matlab command prompt. Functions are useful for

extending the existing Matlab language for personal applications (e.g.

create a function that returns the expected return and standard

deviation related with a set of companies).

 scripts can operate on existing data in the workspace, or they can

create new data on which to operate. Although scripts do not return

output arguments, any variables that they create remain in the

workspace, to be used in subsequent computations. In addition,

scripts can produce graphical output using functions. Scripts are

useful for automating a series of steps that are needed to be

performed many times (e.g. to create a script that executes a series of

5

function related to portfolio optimization).

 Every variable has a name and a data type. With Matlab, accepted

variables names do not start with symbols (like ~, +, -) or numbers,

use lower and upper case letters do not exceed 63 characters and do

not resemble reserved words and build-in functions. Acceptable

definitions include: Time, x, y, XYZ, Ray_value, U3e23 etc. Non-

acceptable definitions are the followings: +Time, 3587num, _XYZ,

rayX-values, for, end, while, ca.se, day etc. The data type is a

classification of particular type information. Among the most usable

types are: integer a whole number, a number without any fraction

(e.g. 12, 10, 89); floating point a number with a fractional part (e.g.

25.7, 78, 1, 0.000005, 5e-5 which is equal to 5*10-5); and character

readable text character (e.g. 'k'). With Matlab, it is not need to type or

declare variables used in the m-files. Any operation that assigns a

value to a variable creates the variable, if needed, or overwrites its

current value, if it already exists.

 Every build-in or user made function has a calling syntax that is

unique for each function. In Matlab, to call a function you type the

function’s name and you enclose the input arguments in brackets (if

more than one input argument exist, then commas should be used

to separate the expressions).

 Matlab is handled through the use of various windows, that each is

related with a certain utility. For example, the Command Window is

used to enter variables and run function and m-files, the Command

History Window makes a diary with the commands that you have

recently entered in the command window, the Workspace Browser

allows you to view the variables that are stored in the workspace, etc.

Any reference to such windows that is made in the main body of

these notes will be explained in detail if it is needed.

1.3 Information of How to Read This Hand-out

In the main body of this hand-out, words that refer to a keyboard instruction

will be written in brackets and in boldface letter. For example, [Enter] will

represent one key-press of the Enter button of the keyboard. Words that

6

represent Matlab’s reserved words such as for, end, who, etc., words that

imply a Matlab term such as m-file, script, function, etc., or key-words related

with the interface menu and toolbars will appear in italics. Words in the

main body that refer to Matlab’s vector and matrix names, Matlab’s build in

functions or user’s new functions will be presented with a shadow style. For

example, if in the main body a reference is made to a vector saved in the

workspace with the name “Hours” it will look like: . The reference to Hours

Matlab’s function that creates 2D figures will be as: . Moreover, note that plot

although each function has a specific calling syntax, usually only the name

of the function will be displayed; if not presented in the body text of this

hand-out, the user should be responsible to find the exact calling syntax of

the function via the Matlab’s help facilities.

Other Matlab output such as warnings, tips or Matlab commands will be

enclosed in double quote marks “ ”. The definition of Matlab related words

and expression in windows (as you will see later) consist exceptions from

these rules. Lastly, references to books and other reading material are

numbered in square brackets (e.g. [2] is the Matlab online help facilities; see

the section with the references). Additionally, if a figure or a table heading

that has a superscript number enclosed in square brackets will indicate the

source from where it was copied (for instance, Figured X: Figure heading,

indicates that the current figure was copied from Matlab online help

facilities).

1.4 Starting Up Matlab

The following instructions usually help for starting up the Matlab in a

computers lab:

Step #1: Use the [Ctrl] + [Alt] + [Del] combination to bring up the logon

screen (at this point you should enter the user name and your password

and after to press [Enter])

Step #2: After few seconds, you view the PC’s Desktop screen with all

available icons. Find the Matlab’s shortcut icon (labelled as “Matlab” and

looks like) and double click on it. After few moments, the Matlab

7

starts up and the following sentence appear in one of the screens:

“To get started, select "MATLAB Help” from the Help menu”

Step #3: The Matlab is now ready to be used (if you want to quit Matlab,

from the window named as Command Window either type quit or exit

from the toolbar choose: File > Exit Matlab).

1.5 Matlab’s Windows

When you start up Matlab, you will view the following interface (Figure 1 - a

difference interface may appear if someone before you has changed the

active windows from the View menu):

The above is termed as the Matlab Desktop (graphical user interfaces) and

contains tools for managing files, variables, and applications associated with

Matlab. Think of the desktop as your instrument panel for Matlab. The tabs

in the Matlab desktop provide easy access to frequently used operations.

Figure 1: The Matlab desktop

8

Hold the cursor over a button and a tooltip appears describing the item.

Note that some of the tools also have toolbars within their windows [2].

You can change the way your desktop looks by opening, closing, moving,

and resizing the windows in it. You can also move tools outside the desktop or

move them back into the desktop (docking). All the desktop tools provide

common features such as context menus and keyboard shortcuts. You can

specify certain characteristics for the desktop tools by selecting Preferences

from the Environment section on the Home tab. For example, you can specify

the font characteristics for command window text. For more information,

click the Help button in the Preferences dialog box [2].

Additionally, two more windows that can be seen in Figure 1 can help the

user during the programming time. The first one and most important is the

workspace browser (Figure 2). The Matlab workspace consists of the set of

variables (named arrays) built up during a Matlab session and stored in

memory. You add variables to the workspace by using functions, running m-

files, and loading saved workspaces

Figure 2: The Matlab Workspace Browser

The workspace is not maintained after you end the Matlab session. To save

the workspace to a file that can be read during a later Matlab session, click

on and then Save.

The third window that appears in Matlab’s desktop is the Current Folder. The

Current Folder browser shows the files and folders in the current directory.

The path to the current directory is listed near the top of the MATLAB

desktop. Matlab file operations use the current directory and the search path

as reference points. Any file you want to run must either be in the current

directory or on the search path (the search path is a default list of paths that

Double-

click a

variable to

see and

change its

contents

in the

Variable

Editor

9

include all folders with Matlab build-in functions and toolboxes; to access

this window from the Home tab click on Set Path in the Environment section).

Another useful window is the command history. Statements you enter in the

Command Window are logged in the Command History. In the Command

History, you can view previously run statements, and copy and execute

selected statements.

To activate or close these and some other windows, on the Home tab, in the

Environment section, click Layout. In the following few subsections, the most

basic from this screen are documented.

1.5.1 Command Window - Matlab as a Calculator

It is the main window in which the user communicates with the software. In

the command window, the user can view the prompt symbol “>>” which

indicates that Matlab is ready to accept various commands by the user. Via

this window, the user can employ the basic arithmetic operators like: “+”

(addition), “-” (subtraction), “*” (multiplication), “/” (division), “Λ” (powers)

and the “()” (brackets), as well as many other build in elementary and other

Function and commands that will be referred to later.

As a first example, enter the following command that performs a basic

calculation (Figure 3):

“5+6/12+9/3-21”

Figure 3: A basic calculation

10

The Matlab displays the results into a variable named as . This is a ans

default variable name that is used by the command window to display the

most recent results instructed by the user that has not defined a specific

name. Continue by entering the following command that creates a four-

element vector (Figure 4):

“[1 2 3 4]”

The square brackets “[]” indicate the definition of the vector. Also, the space

between the vector numbers separates the vector’s elements. The comma “,”

is another way of separating the elements. Additionally, note that the default

variable has lost its previous value in order to store the results of the ans

most recent operation.

As another example, enter the following command that creates a 3-by-3

magic square saved in the matrix variable M:

“M= (3)” magic

Figure 4: A four-element vector

11

and after pressing [Enter] you get the Matlab’s result (Figure 5):

The magic square is created using the element function that is already magic

built-in Matlab.

Type also the following:

“χ=[(2Λ2+1)Λ2-15/4*6.1, 1.23e-2]” and after pressing [Enter] you get

the Matlab’s result (Figure 6)

Figure 5: A 3-by-3 magic table

12

Observe that the very first command that you have entered in the command

window has vanished with the additional of the last one (of course it

depends on the size of the window, in here the command window is

minimized so earlier commands vanish too quickly). You can use the scroll

bar on the right to navigate the command window and go up to see the

earlier commands (or view them via the command history window).

Matlab calculates the quantities as follows:

 First the quantities in brackets.

 Power calculation follow: (e.g. 5 + 2Λ2 = 5 +4 = 9)

 “*” and “/” follow by working from left to right: (e.g. 2*8/4 = 16/4 = 4)

 “+” and “-” follow last, from left to right: (e.g. 6-7+2= -1+2 = 1)

Note that “e” notation is used for very large or very small numbers. By

definition: 1e1 = 1X101 and 1e-1 = 1X10-1.

Figure 6: A 2-element vector

13

Matlab can handle three different kinds of numbers: integers, real numbers and

and complex numbers (with imaginary parts). Moreover, it can handle nonnumber

number expressions like: (Not-a-Number) produced from mathematically undefined NaN

mathematically undefined operations like: 0/0, ∞ * ∞ and produced by operations inf

operations like 1/0. Matlab as a calculator includes a variety of build-in mathematical

mathematical function like: trigonometric, exponential, complex, rounding and

remainder, etc.

Table 1, depicts these elementary mathematical build-in functions (to learn

how to use these commands, review the Matlab help facilities located in

section 1.5.3).

Table 1: The elementary build-in function

Trigonometric Exponential

sin Sine. exp Exponential

sinh Hyperbolic sine. Log Natural logarithm.

asin Inverse sine. log10 Common (base 10) logarithm.

asinh Inverse hyperbolic

sine.
log2 Base 2 logarithm and dissect floating

cos cosine. pow2 Base 2 power and scale floating point

cosh Hyperbolic realpow Power that will error out on complex

acos Inverse cosine. reallog Natural logarithm of real number.

acosh Inverse hyperbolic

cosine

Square root of number greater than

or

tan Tangent Square root.

tanh Hyperbolic tangent. Next higher power of 2.

atan Inverse tangent.

atan2 Four quadrant

inverse tangent.
Complex

atanh Inverse hyperbolic

tangent.
abs Absolute value.

sec Secant angle Phase angle

 Hyperbolic secant complex Construct complex data from real and

imaginary parts

 Inverse secant conj Complex conjugate.

 Inverse hyperbolic
secant

imag Complex imaginary part.

csc Cosecant Complex real part.

csch Hyperbolic cosecant unwrap Unwrap hase angle.

acsc Inverse cosecant True for real array

 Inverse hyperbolic

cosecant
cplxpair Sort numbers into complex conjugate

pairs

cot Cotangent.

Rounding and Remainder coth Hyperbolic

cotangent

acot Inverse cotangent floor Round towards minus infinity.

14

acoth Inverse hyperbolic

cotangent

Round towards plus infinity.

coth Hyperbolic
cotangent

round Round towards nearest integer.

acoth Inverse hyperbolic

cotangent
mod Modulus (signed remainder after

 rem remainder after division.

 sign Signum

Note the build-in function exhibited in Table 1 have their own calling syntax.

For example, if you type in the command window, Matlab returns the sin

following error massage:

“Error using sin

Not enough input arguments.”

This happened because the sin function requires an input expression like a

number enclosed in brackets. If you enter:

“sin(5)”

then you get an answer:

“ans =

-0.9589”

In the rest of this hand-out, only the name of the build-in function will be

given. Beside some exceptions where the correct calling syntax of a function

is fully tabulated, the user is responsible in knowing the necessary input

arguments to the function. Additional the use of the command window will

be apparent as you read this manuscript since the learning of a computer

programming language is pure a “learning by doing” process.

1.5.1.1 Controlling Command Window Input and Output

This section presents ways by which the user can control the command

window input and output.

List of Useful Commands:

 Lists current variables located in the workspace. who

15

 A long form of who. It lists all the variables in the whos

current workspace, together with information about

their size, bytes, class, etc.

 Clear variables and Function from memory. clear

home Moves the cursor to the upper left corner of the

command window and clears the visible portion of the

window. Use the scroll bar to see what was on the

screen previously.

 Clears the command window and homes the cursor. clc

 Terminates Matlab. quit

The format function:

The format function controls the numeric format of the values displayed by

Matlab. The function affects only how numbers are displayed, not how

Matlab computes or save them. Here are the different formats, together with

the resulting output produced from a vector x with components of different

magnitudes [2]. In the command window type:

“ ” format short

and afterwards:

“x”

for retrieving the x vector that you have created before to get:

“x =

2.1250 0.0123”

Note that with this format only 4-decimals place are being used (in total 5

digits). Try also the following format commands to see what you get:

 Floating-point format with 5 digits. format short e

 Best of fixed or floating-point format with 5 digits. format short g

Floating-point format with 15 digits. format long e

Best of fixed or floating-point format with 15 digits. format long g

Fixed format for dollars and cents. format bank

16

Suppressing Output

If you simply type a statement and press [Enter], Matlab automatically

displays the results on screen. However, if you end the line with a semicolon

“;” Matlab performs the computation but does not display any output [2].

This is particularly useful when you generate large matrices. For example,

“A = (100);” magic

although Matlab creates a 100-by-100 matrix saved in the workspace, the

result is not displayed on the command window. Moreover, when a

command ends with “;”, is allowed to enter additional commands before

pressing the [Enter] key. For instance,

“A = (100); B=A;” magic

will perform two commands the one after the other. In here, after creating

the 100-by-100 magic square that is stored in the A (matrix) variable, matrix

B is created to hold the same values as with A. Additionally, note that if two

or more statements are separated with commas, Matlab will display the

results in the screen in the order that these statements were entered.

Entering Long Statements

If a statement does not fit on one line, use an ellipsis (three periods), “...”,

followed by [Enter] to indicate that the statement continues on the next line.

For example,

“s = 1 -1/2 + 1/3 -1/4 + 1/5 - 1/6 + 1/7 ...

- 1/8 + 1/9 - 1/10 + 1/11 - 1/12”

to get:

0.65321”

Blank spaces around the “=”, “+”, and “-“operators are optional, but they

improve readability.

17

Command Line Editing

Various arrow and control keys on your keyboard allow you to recall, edit,

and re-use statements you have typed earlier. For example, suppose you

mistakenly enter:

“rho = (1 + sqt(5))/2”

You have misspelled square root: . Matlab responds with: sqrt

“Undefined function 'sqt' for input arguments of type 'double'.”

Instead of retyping the entire line, simply press the up- arrow key ↑. The

statement you typed is redisplayed. You can recall previous commands by

pressing the up- and down-arrow keys, ↑ and ↓. Press the arrow keys either

at an empty command line or after you type the first few characters of a

command. You can also copy previously executed statements from the

command history window [2]

Interrupting a Command, a Script or a Function

It is often that a user writes a command (or script or a function) that enters

to an endless loop, so it keeps running. Pressing [Ctrl] + [C] once or few

times, it will terminate the execution. Sometimes where the user runs a

script that calls other function, the interruption with [Ctrl] + [C] might take

few seconds to few minutes to take place.

1.5.2 Editor / Debugger

Use the Editor/Debugger to create and debug m-files, which are programs

you write to run Matlab functions [2]. The Editor/Debugger provides a

graphical user interface for basic text editing, as well as for m-file debugging

(Figure 7).

18

Figure 7: Matlab’s Editor/Debugger

It’s like a text editor (e.g. MS Word) suitable for writing executable Matlab

code. Notice that reserved words (e.g. , , functions etc) while if, else, end

appear in blue styling whilst accompanied comments in the programming

code (that can be placed after the comments symbol: “%”) appear in green

letters [2]. Exploit the various menus to become familiar with this window.

1.5.3 Help Options

All MATLAB functions have supporting documentation that includes

examples and describes the function inputs, outputs, and calling syntax.

There are several ways to access this information from the command line:

 Open the function documentation in a separate window using the doc

command.

“doc ” mean

 Display function hints (the syntax portion of the function

documentation) in the Command Window by pausing after you type

the open parentheses for the function input arguments.

“ (“ mean

 View an abbreviated text version of the function documentation in the

19

Command Window using the help command.

“help ” mean

The problem with the above ways is that the user must be familiar with the

topic under consideration and the word following the help command must be

exact and spelled correctly. For example, the Matlab function that returns

the inverse of a matrix is named as: (type “ ” to see what you will inv help inv

get). If the user types “inverse” or “inverce” instead, then Matlab help will

return that such functions cannot be found.

A more flexible way for pursuing help from Matlab, is to access the complete

product documentation by clicking the help icon . Through this screen,

the user can navigate around a variety of topics by double clicking on them

(this browser displays html help pages and can be operate like the Internet

Explorer) or search for a function using a description of the required

function. Returning, to the previous example by just typing “inverse of a

matrix” all functions that can perform the operation inverse of a matrix will

be displayed.

To become familiar with the Matlab’s accompanied toolboxes, navigate in the

contexts, open up the dropping down choices and get know various topics.

20

2 Manipulating Vectors and Matrices

A matrix or an array is the basic element on which Matlab can operate. A 1-

by-1 matrix forms a scalar or a single number, whereas a matrix with only

one row or column forms a row or column vector respectively. This section

exhibits the mathematical manipulation of vectors (arrays) and of two-

dimensional matrices.

2.1 Row Vectors

A vector is a list of numbers separated by either space or commas. Each

different number/entry located in the vector is termed as either element or

component. The number of the vector elements/components determines the

length of the vector. In Matlab, square brackets “[]” are used to both define

a vector and a matrix. For instance, the following command returns a row

vector with 5 elements:

Matlab’s command:

>> y=[5 exp(2) sign(-5) sqrt(9) pi]

Matlab’s response:

y =

5 7.3891 -1 3 3.1416

Note that the definition of the row vector, the user is free to use any build-in

function as long as this is used properly. In the above definition, is the exp

exponential, returns the sign, is the square root and represents sign sqrt pi

π. General speaking and except some special cases, when a function is

applied to a 1-by-1 scalar, the result is a scalar, when applied to a row or

column vector is a row or column vector and when applied to a matrix the

output is again a matrix. This happens because Matlab applied the build-in

function element-wise. The length of the above vector is obtained via the

21

following command:

Matlab’s command:

>> length(y)

Matlab’s response:

ans =

5

Note that is a build-in function that given a vector, it returns its length

length. Since the result of this function is not stored in a user-defined

variable, Matlab saves the result in the variable. If it is need to save the ans

vector’s length to a variable named the command would be: Ylength

Matlab’s command:

>> Ylength=length(y)

Matlab’s response:

Ylength =

5

With Matlab, vectors can be easily multiplied by a scalar and added or

subtracted with other vectors of similar length. Moreover, a scalar can be

added or subtracted to or from a vector and smaller vectors can be used to

construct larger ones. All these operations are performed element-wise. Note

that each vector represents a variable. Some examples follow:

Matlab’s command:

>> a=[-1 2 -3]; b=[2 1 2];

>> c=5*a

Matlab’s response:

c =

-5 10 -15

Comments:
An element-by-element multiplication of vector by 5. a

22

Matlab’s command:

 >> c1=5+b

Matlab’s response:

cl =

7 6 7

Comments:
An element-by-element addition of vector with 5. b

Matlab’s command:

>> d=a+b

Matlab’s response:

d =
1 3 -1

Comments:
An element-by-element addition of two equal length vectors.

Matlab’s command:

>> e=[2*a, c, d]

Matlab’s response:

e =

-2 4 -6 -5 10 -15 1 3 -1

Comments:
A larger vector is created after certain manipulations.

To refer to specific elements of the vector, the vector’s name is followed by

the element’s rank in brackets. For instance we can change the values of the

e vector with the following command:

Matlab’s command:

>> e(2)=-99; e(4)=-99; e(6)=-99;

>> e

Matlab’s response:

e =
-2 -99 -6 -99 10 -99 1 3 -1

23

2.1.1 The Colon Notation

The colon notation “:” can be used to pick out selected rows, columns and

elements of vectors, matrices, and arrays. It is a shortcut that is used to

create row vectors. Moreover, the colon notation is used to view or extract

parts of vectors (afterwards, with matrices, the colon can be used to view a

certain part of a matrix). For instance, the following commands produce

three different row vectors:

Matlab’s command:

>> v1 = 1:8, v2=-4:2:2, v3=[0.1:0.2:0.6]

Matlab’s response:
v1 =

1 2 3 4 5 6 7 8

v2 =
-4 -2 0 2

v3 =
0.1 0.3 0.5

The careful viewer should have notice that the vector creation via the use of

the colon notation has the form: starting_value:step:finishing_value. The

starting_value consists the first value/element of the vector, the

finishing_value is the last value/element of the vector and all other elements

differ by a value equal to step. Also, when the interval between

finishing_value and starting_value is not divisible by the step, the last value

of the vector is not the finishing_value (i.e. in the last element is 0.5 and v3

not 0.6). The colon notation is also used to view or extract parts of a vector.

See the examples to get an idea.

Matlab’s command:

>> v4=v1(2:4)

Matlab’s response:

V4 =

2 3 4

24

Comments:
Extracting the 2th, 3rd and 4th elements of . v1

Matlab’s command:

>> v1(2:3:8)

Matlab’s response:

ans =

2 5 8

Comments:
Extracting the 2th, 5th and 8th elements of . v1

2.1.2 Column Vectors

Column vectors are created via the use of semi-colon “;” instead of commas

and spaces. Operations with column vectors are similar as with row vectors.

The following examples depict the manipulation of column vectors.

Matlab’s command:

>> cv=[1;4;7;9]

Matlab’s response:

cv =

1
4
7
9

Comments:
Creating a four-element column vector.

Matlab’s command:

>> length(cv)

Matlab’s response:

ans =

4

Comments:
Taking the vector’s length.

25

Matlab’s command:

>> CV=[cv(1:2)+2; cv(2:3)*5]

Matlab’s response:

CV =

3
6
20
35

Comments:
Creating that is a four-element column vector. Its first two CV
elements are the two first elements of cv increased by 2 whereas the
last two elements are the 2nd and 3rd elements of cv multiplied by 5.

2.1.3 Transpose of Vectors

To perform operation with column and row vectors of similar length, it is

first needed to transpose the vectors in order to make them either all row

vectors or column ones. The apostrophe symbol “ ' “ is used to convert a

column vector to a row one and vice versa. Remember that the length of the

vectors must match; otherwise, Matlab will return an error. Experiment with

the following examples to learn the use of transpose command.

Matlab’s command:

>> z1 = [2 -1 3], z2 = z1', z3 = z2'''

Matlab’s response:

z1 =

2 -1 3

z2 =
2
-1
3

z3 =
2 -1 3

Comments:

 is a three element row vector. is the transpose of z1. z3 is similar z1 z2

with since after transposing three times is similar as z1 z2

transposing once the . z2

26

Matlab’s command:

>> z1'+z2, z1+z2

Matlab’s response:

ans = 4 -2 6

??? Error using ==> +

Matrix dimensions must agree.

Comments:
'+ operation involves the addition of two column vectors. + z1 z2 z1 z2

is an illegal operation since a row vector cannot be added with a
column vector.

Note that that Matlab can store empty vectors. This is done as follows:

Matlab’s command:

>> Z=[], Z=1:3, Z=[], length(Z)

Matlab’s response:

Z =

[]

Z =

I 2 3

Z =

[]

ans =

0

Comments:
Definition of an empty vector.

Empty vector operation is usually used in cases where the user wants to

turn a non-empty vector to an empty one (to reset all the elements of a

vector).

27

2.1.4 Vector Manipulations Related to Products,

Division, and Powers

Matlab can perform scalar products (or inner products) and dot products, as

well as dot division and power operations. The only restriction is that the

length of the vectors must be the same. The priorities concerning vector

manipulations is the same as in the case that we use Matlab as a calculator

(power operations first followed by “*” and “/” followed by “+” and “-“)

2.1.4.1 Scalar Product

The scalar product or otherwise termed as inner product, concerns the

multiplication of two equal length vectors. The symbol “*” is used to carry

out this operation. Given a row vector W and a column vector U of length t

�̃� = [𝑤1, 𝑤2, … , 𝑤𝑡], �̃� = [

𝑢1

𝑢2

⋮
𝑢𝑡

]

The inner product is defined as the linear combination:

�̃��̃� = ∑ 𝑤𝑖𝑢𝑖

𝑡

𝑖=1

The following depicts some examples with inner products.

Matlab’s command:

>> w=[1 0 2 -1]; u=[2; 4; -2; 0.5];

>> prod1=w*u, prod2=(2+w)*(u/2), prod3=w*w', prod4=w*u*w*u

Matlab’s response:

prod1 =

-2.5

prod2 =
3.25

prod3 =
6

28

prod4 =
6.25

Comments:

Producing the inner product of various operations. For example prod1

is computed as: = (1*2)+(0*4)+(2*(-2))+((-1)*0.5)=-2.5. prod1

2.1.4.2 Dot Product

The dot product involves the multiplication of two similar vectors (to be

either column or row vectors with same length) element-by-element. With

the dot product, a new vector is created. The dot product between the row

vectors �̃� and �̃�𝑇 (where the superscript T represents the transpose symbol)

is another row vector with the following form:

�̃��̃�𝑇 = [𝑤1𝑢1, 𝑤2𝑢2, … , 𝑤𝑡𝑢𝑡]

The dot product in Matlab is performed via the “.*” symbol. By the use of dot

product we can get the inner product. This is explained in the following

examples:

Matlab’s command:

>> dprod1=w.*u', dprod2=u'.*u'.* w

Matlab’s response:

dprod1 =

2 0 -4 -0.5

dprod2 =

4 0 8 -0.25

Comments:
Producing the dot product of various operations. For example dprod1
is computed as: = [1*2, 0*4, 2*(-2), (-1)*0.5]. dprod1

Matlab’s command:

>> inner1=sum(w.*u'), inner2=sum((2+w).*(u'/2))

Matlab’s response:

inner1 =

-2.5

29

inner2 =

3.25

Comments:

Producing the summation of dot product of various operations. When

the function is used with a dot product, the result is the inner sum

product of that operation.

In vector manipulations, dot product is performed after dot power (see the

following section).

2.1.4.3 Dot Division and Power

The dot division does not exist mathematically, but for programming

purposes, Matlab includes such operation. The dot division can be used to

divide a vector with another vector of similar characteristics and also to

divide a vector with a scalar. Through the following examples the use of dot

division is outlined. Pay attention on the cases where a dot division produces

pathological results.

Matlab’s command:

>> d_div1=-3:1.5:3, d_div2=1:5

>> d_div2./d_div2, d_div1./d_div2, d_div2./5

Matlab’s response:

d_div1 =

-3.0000 -1.5000 0 1.5000 3.0000

d_div2 =
1 2 3 4 5

ans =

1 1 1 1 1

ans =
-3.0000 -0.7500 0 0.3750 0.6000

ans =

0.2000 0.4000 0.6000 0.8000 1.0000

Comments:
Examples of dot division.

30

Matlab’s command:

>> d_div2./d_div1

>> d_div2(3)=0; d_div1./d_div2

>> 1/d_div1

Matlab’s response:

Warning: Divide by zero.
(Type "warning off MATLAB:divideByZero" to suppress this warning.)

ans =

-0.3333 -1.3333 Inf 2.6667 1.6667

Warning: Divide by zero.

(Type "warning off MATLAB:divideByZero" to suppress this warning.)

ans =
-3.0000 -0.7500 NaN 0.3750 0.6000

Error using ==> /
Matrix dimensions must agree.

Comments:
Examples of pathological results of dot division. In the first case,
Matlab returns the result after displaying a warning concerning the
division of a number with zero that leads to an infinity quantity.
Observe that Matlab returns an Inf for such operations. Likewise, in
the second case, the division of 0/0 is not defined and a Not-a-
Number, , is returned in the vector. In the third case, the inverse NaN
of each vector element is required, but Matlab returns an error since
for such operation the “./” and not “/” should have been used instead.

Example: Examine the following limit:

lim
𝑥→∞

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

Matlab’s command:

>>x=[0.5 1 5 25 50 100 300];

>>(exp(x)-exp(-x))./(exp(x)+exp(-x))

Matlab’s response:

ans =

0.4621 0.7616 0.9999 1.0000 1.0000 1.0000 1.0000

31

Comments:
Apparently, the limit converges to unity.

The dot power of vectors works in a similar way as with other dot products.

Usually there is the need to square (or to rise to some other power) the

elements of a vector. This can be done with the dot power operation as

explained in the following example set.

Matlab’s command:

>> d_power=sqrt(0:log(3):6)

>> d_power.^ 2, d_power.^ 4, d_power.* d_power, ans.*ans

Matlab’s response:

Comments:
Examples of dot power. The second or the forth power of a certain

vector can be defined either with the dot power or the dot product
operation.

Before leaving this section, the reader should note that dot power of vectors

is performed before any other operation, followed by the dot product and the

dot division. Off course, if a complex vector command involves

manipulations into brackets, these are executed before any other action.

2.1.4.4 Some Useful Vector Functions

Table 2 lists some useful function that can be used with row and column

vectors. This list is by no way exhaustive.

d_power
0 1.0481 1.4823 1.8154 2.0963 2.3437

ans =
0

1.0986 2.1972 3.2958 4.3944 5.4931

ans =
0

1.2069 4.8278 10.8625 19.3112 30.1737

ans =
0

1.0986 2.1972 3.2958 4.3944 5.4931

ans =
0 1.2069 4.8278 10.8625 19.3112 30.1737

32

Table 2: Various function that can be used with vectors

Basic Information Elementary Matrices and

Arrays

disp Display array linspace
Generate linearly spaced

vectors

display Display array logspace
Generate logarithmically

spaced vectors

isempty True for empty vector ones Create array of all ones

isequal True if arrays are identical rand

Uniformly distributed

random numbers and

arrays

length Length of vector zeros Create array of all zeros

Operations and Manipulation

cumprod Cumulative product mean Average of array

cumsum Cumulative sum median Median of array

end Last index min
Minimum elements of

array

find
Find indices of nonzero

elements
sort

Sort elements in

ascending order

max
Maximum elements of

array
sum Sum of array elements

Use the help facilities to see how these functions can be used. The following

illustrate the use of some of these functions.

Matlab’s command:

>> clear; clc;

>> x=[]; isempty(x)

>> x=linspace(1, 10, 6), x=logspace(0.1, 0.5, 6); x(7)=0.1; x

>> sort(x), cumsum(x), [Max, I]=max(x), x(end)

Matlab’s response:

ans = 1

33

Max =
3.1623

I =
6

ans =
0.1000

Comments:
Examples with vector function. The first command instructs for the

creation of an empty vector. The function returns 1 for the isempty

true statement of an empty vector. Afterwards, is used to linspace

generate a row vector of 6 linearly equally spaced points between 1

and 10 whereas is used to generate a row vector of 6 logspace

logarithmically equally spaced points between decades 10Λ0.1 and
10Λ0.5. “x(7)=0.1” instructs for the creation of a seventh element for

the x vector. “ (x)” sorts the elements of x in ascending order, sort

“ (x)” is a vector containing the cumulative sum of the cumsum

elements of x, “[Max, I]= (x)” returns in the maximum value of max Max

the vector x and in I the index of the maximum element. The last

command, “x(end)” returns the last element of the vector. x

2.2 Two Dimensional Arrays (Matrices)

A m × n matrix is a rectangular array that has m rows and n columns. For

example, a 2-by-4 matrix can be the following one:

𝐴2×4 = (
𝑎11 𝑎12 𝑎13 𝑎14

𝑎21 𝑎22 𝑎23 𝑎24
)

It is obvious that the above matrix can be decomposed to either 2 row

vectors of 1 × 4 dimensions or to 4 column vectors of 2×1. So, row and

column vectors are special cases of a two dimensional array (matrix).

x =
1.0000 2.8000 4.6000 6.4000 8.2000 10.0000

x =

1.2589 1.5136 1.8197 2.1878 2.6303 3.1623 0.1000

ans =

0.1000 1.2589 1.5136 1.8197 2.1878 2.6303 3.1623

ans =

1.2589
2.7725 4.5922 6.7799 9.4102 12.5725 12.6725

34

If we let, a11 =1, a21= -2, a12=-2, a22 =2, a13 =5, a23 = 4, a12=-3 and a24 =1,

then the “A” matrix is reformed to:

𝐴2×4 = (
1 −2 5 −3
−2 2 4 1

)

The subscripts in each element of the matrix denote the element’s position.

For instance, the position of a23 is 2nd row, 3d column. Matlab stores matrices

using this rational. Having in mind that a two dimensional array is a

composition of row vectors, we can use spaces (or commas) to define its row

vectors and semicolons to separate them. The above matrix can be easily

created as follows:

Matlab’s command:

>> A=[1 -2 5 -3; -2 2 4 1]

Matlab’s response:

A =

 1 -2 5 -3

-2 2 4 1

Comments:

Creation of a 2-by-4 matrix.

To show that row and column vectors are special cases or a two dimensional

array (matrix) elaborate on the following examples:

Matlab’s command:

>> B=linspace(1, 4, 5); C=1:5; D=[-4:-1, NaN, Inf 1];

>> A1 = [B; C], A2=[A1; A1], A3=[B -9 -5;D]

Matlab’s response:

A1 =

1.0000 1.7500 2.5000 3.2500 4.0000

1.0000 2.0000 3.0000 4.0000 5.0000

A2 =

1.0000 1.7500 2.5000 3.2500 4.0000

1.0000 2.0000 3.0000 4.0000 5.0000

35

1.0000 1.7500 2.5000 3.2500 4.0000

1.0000 2.0000 3.0000 4.0000 5.0000

A3 =

1.0000 1.7500 2.5000 3.2500 4.0000 -9.0000 -5.0000
-4.0000 -3.0000 -2.0000 -1.0000 NaN Inf 1.0000

Comments:
Various manipulations with matrices.

The examples above, illustrate the case where a larger matrix can be created

from smaller ones. Also, pay attention that Matlab returns an error if the

user tries to combine row or column vectors with different lengths to create a

two dimensional array.

Usually, it is imperative to store the size of a matrix in some variables. This

can be done via a build in Function named as size:

Matlab’s command:

>> [m1 n1]=size(A1); [m2 n2]=size(A2); [m3 n3]=size(A3);

>> M_N=[m1 n1; m2 n2; m3 n3]

Matlab’s response:

M_N =
2 5

4 5
2 7

Comments:
Using the function to find the size of various matrices. Each row size
of the matrix contains the size of matrices , and M_N A1 A2 A3
respectively.

2.2.1 Transpose of a Matrix

Recall matrix “A” that was defined earlier. The transpose of “A”, symbolized

in linear algebra as “AT” is the following:

𝐴2×4 = (
𝑎11 𝑎12 𝑎13 𝑎14

𝑎21 𝑎22 𝑎23 𝑎24
) , 𝐴2×4

𝑇 = (

𝑎11

𝑎12

𝑎21

𝑎22
𝑎13

𝑎14

𝑎23

𝑎24

)

36

It is the same idea with the transpose of a row vector to a column one and

vise versa. The transpose of an m × n matrix is an n × m one that is found if

the rows of the original matrix become columns in the transposed one.

Recall that the transpose in Matlab is performed with “ ' ”. See the following

examples to digest this issue.

Matlab’s command:

>> A4=[1 2 3; 4 5 6], size(A4), A4', size(A4'), A5=[A4' A4']

Matlab’s response:

A4 =

1 2 3
4 5 6

ans =

2 3

ans =

1 4
2 5
3 6

ans =

3 2

A5 =

1 4 1 4
2 5 2 5
3 6 3 6

Comments:
Exploiting the transpose of a matrix.

2.2.2 Elaborating on Parts of Matrices - The Colon

Notation

As noted before, in Matlab, a matrix element position is indexed according to

the row and column number. Recall the aforementioned “A” matrix:

𝐴2×4 = (
1 −2 5 −3
−2 2 4 1

)

If someone wants to extract the elements: a12, a23, and a24, this can be done

in the following way (A has already been created and should be stored in the

37

workspace; use the function to view the variables that you have saved in who

the workspace or view them from the workspace browser):

Matlab’s command:

>> A(1,2), A(2,3), A(2,4)

Matlab’s response:

ans =
-2

ans =
4

ans =
1

Comments:
Extracting specific elements from a matrix.

So, to refer to a certain matrix element, after the matrix name the element’s

index/position is enclosed in parenthesis. This is similar with the indexing

of vectors elements with the exception that in the case of matrices, two

indexes should be used (the first one indicates the row number whilst the

second the column number). In general, the syntax for manipulating a

matrix element in Matlab is:

“K(row_index, column_index)”

where K is an m x n matrix, row_index indicates the row in which an element

lays and column_index the according column. The upper left position in a

matrix has (1,1) coordinates. row_index can take all integer values smaller

than m, inclusive, while column_index can also take all integer values

smaller than n, inclusive (note that Matlab can handle multidimensional

arrays just by putting additional indexes to control the higher dimensions).

Moreover, Matlab has an additional way to refer to matrix elements just by

using a single index number in the brackets after the declaration of the

matrix name. Starting from the upper left element that represents the first

element (1) of the matrix, further reference to additional elements is done

incrementally one by one and column-wise. That is, the element with

38

position (2, 1) is taken to be the second (2), the (3, 1) the third and finally

the (m, n) element is the last one (n*m). View the following example to

understand this king of matrix indexing.

Matlab’s command:

>> H=magic(4), H(1), H(2), H(9), H(16)

Matlab’s response:

H=

16 2 3 13
5 11 10 8
9 7 6 12

4 14 15 1

ans =
16

ans =
5

ans =
3

ans =
1

Comments:
Extracting specific elements from a matrix using single indexing.

For matrices, the colon notation “:” plays an important role. Colon can be

used to extract either a specific part of a matrix, or to view a whole row, a

whole column or a sub-matrix extracted from the original one. Earlier, the

colon was used to define vectors and it has been explained that it creates

elements from a starting_value through a finishing_value equally spaced

according to a defined step (if the step is not defined, then the step is taken

to be 1). In Matlab, a certain row of a matrix can be extracted by placing the

colon in the row_index, “K(:,column_index)”, and a certain column by placing

the colon in the column_index, “K(row_index,:)”. A sub-matrix that is

composed by the r1 to r2 rows (r1=r2) and c1 to c2 columns (c1 =c2) of the

original matrix can be retrieved according to the following syntax:

“K(r1:r2, c1:c2)”

39

In addition, there are special cases where the step is defined to be a different

integer number other than 1. Some paradigms follow:

Matlab’s command:

>>A(:,1), A(1,:), A(:,1:3), A=[A', A'.*2], A(2:3,3:4)

>> A(1:3,1:2)=A(2:end,3:end)

Matlab’s response:

ans =

1
-2

ans =

1 -2 5 -3

ans =

1 -2 5
-2 2 4

A=

1 -2 2 -4
-2 2 -4 4
5 4 10 8

-3 1 -6 2

ans =

-4 4
10 8

ans =
-2 -4

A=

-4 4 2 -4

10 8 -4 4
-6 2 10 8
-3 1 -6 2

Comments:
The first command, instructs for the extraction of the first column
whilst the second for the extraction of the first row. The following one
instructs for the extraction of the 1st, 2nd and 3rd columns. Afterwards,
A is re-built; the following command instructs for the extraction of the
sub-matrix that is composed from the elements of A that are included
in: 2nd and 3rd row - 3rd and 4th columns. The following command is a
special case where the step in the colon expression is different than 1.
The last command is a more tricky use of the colon.

40

2.2.3 Matrix Basic Manipulations

Subtraction and multiplication with a scalar are similar as with the vector

case. Matrix dimensions () must match when performing manipulations size

with addition and subtraction. Some examples follow:

Matlab’s command:

>> J=[-1 2 3 1; 5 2 4 2; 1 1 2 0]; I=[1 4 5 2; 8 7 5 1; -1 1 -1 1];

>> J+2*I, J(:,1)+I(:,2), J(1,:)-1/4*I(2,:)

Matlab’s response:

ans =

1 10 13 5
21 16 14 4
-1 3 0 2

ans =
3
12
2

ans =
-3.0000 0.2500 1.7500 0.7500

Comments:
Basic matrix addition, subtraction and scalar multiplication.

2.2.4 Matrix Manipulations Related to Products,

Division, and Powers

Similar rules as with the case of vectors apply to matrix manipulations

related with dot operations and products of matrices.

2.2.4.1 Matrix Dot Product, Division and Powers

It is straightforward to generalize the properties of dot operations from the

case of vectors to the case of two-dimensional arrays. The operations are

again performed element-by-element. Work on the following examples to

learn the use of dot operations with matrices (remember which operations

come first).

41

Matlab’s command:

>> clear; U=[-1 2 1; 0 -2 3]; V=[1:3; 5 2 4];

>> U.^2, U.*V, (1./V).^2.*U, U.^U

Matlab’s response:

ans =

1 4 1
0 4 9

ans =
-1 4 3

0 -4 12

ans =
-1.0000 0.5000 0.1111

0 -0.5000 0.1875
ans =

-1.0000 4.0000 1.0000
1.0000 0.2500 27.0000

Comments:
Dot operations with two-dimensional arrays.

2.2.4.2 Matrix to Vector Product - Matrix to Matrix Product

A matrix can be multiplied with a vector or a matrix as long as the following

rule concerning their dimensionality/sizes holds:

(m × n) × (n×l)

That is, the first’s matrix columns equal the second’s rows. A matrix “A” with

dimensions m × n can be multiplied with a matrix “B” with dimensions n × l

resulting to a matrix “C” with dimensions m × l:

𝐶𝑚×𝑙 = 𝐴𝑚×𝑛 × 𝐵𝑛×𝑙

The above matrix “A” can be multiplied with a 1 × m row vector “R1” from left

to produce a 1 × n row vector “R” while “A” can be multiplied with an n × 1

column vector “C1” to the right to produce a column vector “C” with m × 1

dimensions:

𝑅1×𝑛 = 𝑅11×𝑚 × 𝐴𝑚×𝑛

𝐶𝑚×1 = 𝐴𝑚×𝑛 × 𝐶1𝑛×1

Let’s define the “A” and “B” matrices:

42

𝐴2×4 = (
𝑎11 𝑎12 𝑎13 𝑎14

𝑎21 𝑎22 𝑎23 𝑎24
) , 𝐵4×2 = (

𝑏11

𝑏21

𝑏12

𝑏22

𝑏31

𝑏41

𝑏32

𝑏42

)

Like linear algebra, Matlab products with matrices (and/or vectors) are
calculated as follows:

𝐶2×2 = 𝐴2×4 × 𝐵4×2 = (
𝑐11 𝑐12

𝑐21 𝑐22
)

𝐶2×2 = (
𝑎11𝑏11 + 𝑎12𝑏21 + 𝑎13𝑏31 + 𝑎14𝑏41 𝑎11𝑏12 + 𝑎12𝑏22 + 𝑎13𝑏32 + 𝑎14𝑏42

𝑎21𝑏11 + 𝑎22𝑏21 + 𝑎23𝑏31 + 𝑎24𝑏41 𝑎21𝑏12 + 𝑎22𝑏22 + 𝑎23𝑏32 + 𝑎24𝑏42
)

That is, the element in the (1,1) position of the new matrix “C” if the inner

product of the 1st row of “A” with the 1st column of “B”, the (1,2) element of

“C” is the inner product of the 1st row of “A” with the 2nd column of “B” and so

on. Work through the following examples to digest this topic.

Matlab’s command:

>> clear; A=[1 -2 5 -3; -2 2 4 1]; B=[2 3;1 0;2 -1;1 4]; A_B=[A;B'];

>> R1 = [-2 -1 3 2]; C1 = [1; -1; 2; 0];

>> C=A*B, Row=R1*A_B, Col= A_B*C1, A*(A_B*A_B)*B

Matlab’s response:

C =
7 -14 7 -6

Row =
12 5 -10 16

Col =

13
4
5
1

ans =
39 -310 297 314

Comments:
Matrix-vector and matrix-matrix products.

43

2.2.5 Special Cases of Matrices

Matlab has some very useful build-in matrices function that ease the

manipulation of two dimensional arrays. These function usually take as

input (at least) the matrix dimension and return a certain result. Table 3

exhibits these very useful functions accompanied with a short explanation of

their use.

Table 3: Various function that can be used with vectors.

eye(m,n)
In the case where m is equal to n this returns an identity

matrix

ones(m,n) Creates an m-by-n matrix of ones

diag(V)
When is a m-by-m matrix returns the elements of the
main diagonal.

 Creates an m-by-n matrix with random entries

 Creates an m-by-n matrix of zeros

Examples with the above matrix-function follow:

Matlab’s command:

>> eye(3,2), ones(2,3), diag([2 3; 1 -2]), rand(2,2), zeros(1,2)

Matlab’s response:

ans =

1 0
0 1
0 0

ans =

1 1 1
1 1 1

ans =
2

-2

ans =

0.9501 0.6068

0.2311 0.4860

ans =
0 0

Comments:

44

Examples with matrices build-in functions.

2.2.6 Additional Useful Matrix Functions

Functions that are exhibited in Table 1 can also been applied to a two dimensional

dimensional arrays because vectors are special cases of matrices (and vise versa).

versa). Additional build-in functions are illustrated in

Table 4.

Table 4: Various function that can be used with vectors.

Basic Information Elementary Matrices and Arrays

ndims Number of dimensions blkdiag Block diagonal concatenation
numel Number of elements

Operations and Manipulation

det Determinant rank Matrix rank
expm Matrix exponential Flip sortrows Sort rows in ascending order
fliplr matrices left-right Flip sqrtm Matrix square root
flipud matrices up-down trace Sum of diagonal elements
inv Matrix inverse tril Lower triangular part of

matrix
logm Matrix logarithm triu Upper triangular part of

matrix
norm Matrix or vector norm

Moreover, type: “ ” to view some very useful matrix functions help matfun

related to numerical linear algebra.

2.2.7 Example: System of Linear Equations

Many times, a researcher has to solve a system of linear equation

simultaneously. In matrix notation, such problem is formulated as:

Ax = b

where “A” is a coefficient matrix, “x: is the set (column) of unknowns and “ b”

is a column vector. In an equation-wise format, the above is equal to:

45

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑚𝑥𝑚 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑚𝑥𝑚 = 𝑏2

⋮
𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + ⋯ + 𝑎𝑛𝑚𝑥𝑚 = 𝑏𝑛

The solution of the above system can be expressed as:

𝑥 = 𝐴−1𝑏

given that “A-1” (that represents the inverse matrix of “A”) exists and the

number of equation, n, is equal or greater than the number of unknowns, m.

A unique solution to the above equation system exists when: n=m.

Matlab has standard and efficient specialized routines to solve such systems

like the function (called alternatively with “\”). Otherwise, a quick mldivide

way (but sometimes non practical and inaccurate if the number of equations

is extremely large) to solve the above system is via the inverse function, inv

(note that the can be used only with square matrices). View the following inv

example to understand how you can solve a small system of linear

equations:

Matlab’s command:

>> clear; A=[2 4 3; -2 -4 2; 6 4 2]; b=[2 ;4;1];

>> x1=inv(A)*b, x2=A\b

Matlab’s response:

x1 =
0.0500
-0.4250
1.2000

x2 =
0.0500
-0.4250
1.2000

Comments:
Two ways for solving a system of linear equations.

To see that these two procedures lead to different results, elaborate on the

following example (search online help to see the use of the command:

): pascal

46

Matlab’s command:

>> clear; A=pascal(10); b=[5; -2; 4; 8; 1; 2; 0; -6; 2; 3];

>> x1=inv(A)*b; x2=A\b;

>>diff=x1-x2

Matlab’s response:

diff =

-1.0328 e-006
9.0204 e-006

-3.4539 e-005
7.6293 e-005
-0.00010781

 0.0001013
-6.3407 e-005
2.5521 e-005

-5.9979 e-006

6.2738 e-007

Comments:
For even moderate linear systems, the two methods (inv and “\”) lead
to different solutions. If high precision is required, then the
researcher should prefer the “\”.

The most proper way for large systems is the use of “\”. See the help

facilities for details on and on “\”.inv

47

3 Plots and Graphs (2D and 3D)

It is quite easy to create a plot or a graph by using the variables or

parameters that have already been stored in the Matlab’s workspace. Matlab

offers a variety of build-in Function for creating simple two dimensional plots,

3 dimensional surface plots, to combine plots to a larger one and so on. The

following subsections are a very brief and an elementary reference to the

visualization capabilities of Matlab.

3.1 Creating 2D Line Plots

The basic function for the creation of a simple 2D line plot is called: . Let plot

be a row or column vector with real data named Y, with elements “y1, y2, ...,

yn”. If plot is called as: “ (Y)”, then a linear plot of the elements of Y versus plot

its index will appear (the function creates/plots the pairs: (1, y1), (2, plot

y2),..., (n, yn) and connects them with a line). If for each “yi” we have an

accompanied “xj” coordinate, then the function “ (X,Y)” plots all pairs: (x1, plot

y1), (x2, y2), ..., (xn, yn) and connects them with a line. Note that vectors Y and

X must share the same length. Additionally, if the data to be plotted are

stored in a two dimensional array, then the arguments for the plot function

can be done via the use of colon notation “:”. It is very easy to plot the

following function in the range [0,5]:

𝒚 =
𝟐𝒙𝟐 + 𝟓𝒙 − 𝟏

𝒙𝟑 − 𝟓

Matlab’s command:

>> clear; x=0:0.5:5; y=(2*x.^2+5*x-1)./(x.^3-5); plot(x,y);

>> x=0:0.2:5; y=(2*x.^2+5*x-1)./(x.^3-5); plot(x,y);

48

Matlab’s response:

Comments:
Plot of a function. The use of dot operations is prominent for this task.
Note that the plot’s smoothness is controlled by the density of the x
vector. In the second plot where the x is denser, the function plot is

smoother.

3.1.1 Plot Edit Mode

If you have already type the aforementioned commands on the Matlab

command window, you will have noticed that the plots that you see, appear

in a figure window (i.e. Figure 8) that offers a variety of tools that allow you

to edit and customize the plot under consideration by using a point and click

style editing mode.

49

Figure 8: The figure window

This figure window has tools that look like a photo editor (e.g. Microsoft®

Photo Editor). You can select objects in a graph, cut, copy, paste, move and

resize objects, zoom in and zoom out at certain areas of the plot, change the

settings of the axes, print or save the figure for a later use or even to export

the plot in a certain format (e.g. *.emf, *.bmp, *,ipg, *.tif, etc). Create a figure

and play around with the various tools to learn their use.

The plots that are included in this handout (except the ones that were copied

from [2]) have been exported from the figure window in an enhanced metafile

format (*.emf). To export a plot, from the figure window go: File>Export, and

from the window that appears choose the exporting format, give a name to

the file and save it in a folder of your choice. By doing this, you can easily

insert plots from Matlab to a text editor like Microsoft® Word.

50

3.1.2 Function and Style Facilities Related to Plots

The blue solid line is the default style for the plots. This of course can

change. Matlab gives the user the option to define a different line colour and

to mark each plotted point with a symbol. To do this, the user should call

the plot function as:

“ (X,Y, ‘???’)” plot

where “?” represents the color, “?” the mark style and “?” the line style (if not

given, then Matlab uses a default style). Table 5 tabulates the plot facilities

(see also the online help).

Table 5: Plot colour and line styles

Symbol Colour(?) Symbol Line Style (?)
g Green -,:,-.,-- Solid, dotted, dash dot and dashed
r Red

c Cyan Symbol Mark Style
m Magenta ., o, x Point, circle and x-mark
y Yellow + , *, s Plus, star and square
k Black d, v Diamond and triangle down

 Λ, <, > Triangles up, left and right
 p, h,s Pentagram, hexagram and solid

Moreover, Table 6 lists additional commands that are useful when using the

function. plot

Table 6: Various functions that help in the creation of 2D-plots.

Function Comment
axis

Sets the minimum and maximum values of axes.

clf Clear the current figure.

close (all)
Closes the current (all) figure(s).

figure
Creates a new figure window.

grid on / off Adds/removes major grid lines to the current
axes.

gtext('text') Adds text to a figure manually, by the use of
mouse.

hold on/off
hold on / off holds the current plot and all axis
properties so that subsequent graphing
commands add to the existing graph.

legend('text')/legend off Adds (removes) a legend to the graph.

loglog The same as with plot but logarithmic scale axes

51

are used.

semilogx
The same as with plot with the exception that
logarithmic scale is used for X-axis.

semilogy
The same as with plot with the exception that
logarithmic scale is used for Y-axis.

subplot Breaks the current figure to subplots.
title('text') Adds a title above the figure.
xlabel('text') X-axis label
ylabel('text') Y-axis label

View the following examples to digest the plot facilities.

Matlab’s command:
>> plot(x, y, 'md: '); figure; plot(x, y, 'r*-'); hold on;

>> y1=rand(1,length(y)), plot(x,y1, 'bo'); plot(x,y1, 'r+');

>> xlabel('X-values'); ylabel('Y-values'); title('This is a plot');

>> close all; plot(x,y, 'bp--', x, log(y1.^2), 'rh', x, log(y1.^2),'bs');

Matlab’s response

52

Comments:

Experimenting with various function and facilities related to the

plots. The last plot command shows how few plots can be depicted

in one figure without using the hold on command.

The following examples, concern the creation of some subplots in one figure

window. If you view the online help for the subplot command, you will see

that it takes three input arguments. That is, it is called as:

“ (m,n,p)” subplot

It breaks the figure window into an m-by-n matrix of small axes, selects the

p-th axes for the current plot, and returns the axis handle. The axes are

counted along the top row of the figure window, then the second row, etc.

The subplot function instructs which subplot is handled at the current time.

After the subplot command, a plot command should follow. See the following

examples:

Matlab’s command:

>> close all; subplot(2,3,1); plot(x,y, 'r--'); title('Subplot 1');

>> subplot(2,3,2); plot(x,y1, 'y*'); title('Subplot 2');

>> subplot(2,3,3);

>> subplot(2,3,5); plot(randn(1,30), 'bo:'); title('Subplot 5');

>> subplot(2,3,6); plot(x,y, 'bp--', x, (y1.^2), 'rh', x, log(y1.^2),'bs');

>> title('Subplot 6');

53

Matlab’s response:

Comments:

Experimenting with the command. The first two input subplot

arguments to the function define the dimensionality of the subplot

figure window. If m is the first input arguments and n the second,
then the figure window breaks to an m-by-n plot matrix. The third

input to the function designates the current subplot to be subplot

handled. Starting from the upper left corner and moving row-wise to
the lower right corner, 1 refers to the first subplot, 2 to the second

and mn to the last one. After each command, the plot subplot

command should follow. In the current examples, the commands
instruct for the creation of a 2-by-3 subplot matrix. The 1st, 2nd, 5th

and 6th subplots are used whilst the 3rd and 4th are currently
unused. Note that if the subplot command is avoided for any
subplot, then its space on the figure window stays empty. If only the

is called as with the case of the third subfigure, then a blank subplot

figure appears in the figure window.

Moreover, Matlab offers a variety of options to customize the graph. For

example, a more general calling syntax for the plot is:

“ (X, Y, '???', 'PropertyName', PropertyValue, ...)” plot

where “PropertyName” relates to an element of the plot and “PropertyValue”

is defined by the user. Some useful properties concern the following:

 “LineWidth” - specifies the width (in points) of the line.

 “MarkerEdgeColor” - specifies the colour of the marker or the edge

colour for flled markers (circle, square, diamond, pentagram,

hexagram, and the four triangles).

 “MarkerFaceColor” - specifies the colour of the face of filled markers.

54

 “MarkerSize” - specifies the size of the marker in units of points.

View the following examples to conceptualize this issue:

Matlab’s command:
>> plot(x,y,'bd-.', 'LineWidth', 2, 'MarkerSize', 11, ...
 'MarkerFaceColor', 'r', 'MarkerEdgeColor', 'g')

Matlab’s response:

Comments:
An example of a plot that uses some of the plot properties.

Besides these 2D visualization facilities, Matlab can be used to create bar

charts, pie charts, histograms, stems plot, stairstep plots, errorbars etc. Use

the online help and the help browser to see how you can use these

visualizations facilities and learn more about the plot properties.

55

3.2 Creating 3D Graphs

Matlab offers fancy 3-dimensional line plots and surface graphs.

3.2.1 Creation of 3D Line Plots

There is the function: plot3 which its use is similar as with the function: plot,

with the difference that an additional input argument corresponding to the

additional dimension is required (the additional dimension is symbolized as

“z”). plot3 is used to plot lines or point coordinates in the 3D space. Let use

the plot3 to create a 3D helix:

Matlab’s command:

>> clear; g=linspace(-5*pi,5*pi,200); plot3(sin(g),cos(g),g,'r*-');
>> xlabel('x'); ylabel('y'); zlabel('z'); title('A helix');

Matlab’s response:

Comments:

Creating a helix with the plot3 function.

3.2.2 Creation of 3D Mesh and Surface Graphs

There are also many commands that lead to the creation of 3D surfaces.

Recall that to create a surface of two variables, at each pair of (x,y) a

56

functional expression, z=f(x,y), is evaluated. Usually, we evaluate the z

behaviour in a certain area of the (x,y)-plane in which z has some interesting

properties (e.g. it presents a minimum, a maximum or a saddle point).

Suppose x vector that defines the x-axis (abscissa) and a y vector that

defines the y-axis (ordinate) exist and define the (x,y)-plane on which we

would like to create the 3D surface of z=f(x,y). To plot the surface, it is

needed to create a grid of sample points (most preferable with high density

and this is defined by the difference between the elements of x and y) that

covers the rectangular domain of the (x,y) plane in order to generate X and Y

matrices consisting of repeated rows and columns of x and y, respectively,

over the domain of the function. Then these matrices will be used to evaluate

and graph the function.

The function transforms the domain specified by two vectors, x meshgrid

and y, into matrices, X and Y. You then use these matrices to evaluate the

z=f(x,y). The rows of X are copies of the vector x and the columns of Y are

copies of the vector y.

We will see how we can plot a 3D surface via an example. Let say that we

need a graph of the well know peaks function that has the following

functional form:

𝑍 = 𝑓(𝑥, 𝑦) = 3(1 − 𝑥)2𝑒(−𝑥2−(𝑦+1)2) − 10 (
𝑥

5
− 𝑥3 − 𝑦5) 𝑒(−𝑥2−𝑦2) −

𝑒−(𝑥+1)2−𝑦2

3

We want to examine this function in the rectangular space of (x,y)-plane

defined as:

-2 < x < 2

-4 < y < 4

Since Matlab understands combinations of (x,y,z) pairs only, it is needed to

evaluate at various points (the number of these points defines the surface Z

smoothness) that lay in the above rectangular space. can be used meshgrid

to create the desired grid of points. The following code lead to the generation

of the grid:

57

Matlab’s command:
>> clear; x=-2:1:2; y=-4:1:4; [X,Y]=meshgrid(x,y)

>> plot(X,Y, 'rh'); axis([-3 3 -5 5]); xlabel('x-axis'); ylabel('y-axis');

>> title('Meshgrid');

Matlab’s response:

X=

-2 -1 0 1 2

-2 -1 0 1 2
-2 -1 0 1 2
-2 -1 0 1 2
-2 -1 0 1 2
-2 -1 0 1 2

-2 -1 0 1 2
-2 -1 0 1 2
-2 -1 0 1 2

Y=

-4 -4 -4 -4 -4
-3 -3 -3 -3 -3
-2 -2 -2 -2 -2
-1 -1 -1 -1 -1

0 0 0 0 0
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4

Comments:

Creating the grid necessary for plotting a 3D surface. takes meshgrid

as inputs the vectors and that define the (x,y)-plane that should be x y

used to evaluate and returns two matrices (X and Y) that if taken Z

58

together, generate various (x,y) pairs that lay in the rectangular

domain. The subsequent 2D plot of and shows how the grid is X Y

sampled.

Now, we should evaluate the Z at each pair of the grid and generate the

surface plot. This is done with the following code:

Matlab’s command:

>> Z =3*(1-X).^2.*exp(-X.^2 - (Y+1).^2) ...

 -10*(X/5-X.^3-Y.^5).*exp(-X.^2-Y.^2) ...

 -1/3*exp(-(X+1).^2 - Y.^2);

>> figure(1); mesh(X,Y,Z); xlabel('x'); ylabel('y'); zlabel('Z');

>> figure(2); surf(X,Y,Z); xlabel('x'); ylabel('y'); zlabel('Z');

Matlab’s response:

59

Comments:
Creating the 3D mesh and a 3D surface. The function is not smooth
because the dense of the x and y was too low.

With the above code, a 3D mesh and a 3D surface is created. It is apparent

that the surfaces are not smooth because the original density of x and y

vectors was too low. In the following, we re-create the mesh and surface with

higher densities.

Matlab’s command:

>> x=-2:0.25:2; y=-4:0.5:4; [X,Y]=meshgrid(x,y);

>> Z =3*(1-X).^2.*exp(-X.^2 - (Y+1).^2) ...

 -10*(X/5-X.^3-Y.^5).*exp(-X.^2-Y.^2) ...

 -1/3*exp(-(X+1).^2 - Y.^2);

>> figure(1); mesh(X,Y,Z); xlabel('x'); ylabel('y'); zlabel('Z'); title('Peaks')

>> figure(2); surf(X,Y,Z); xlabel('x'); ylabel('y'); zlabel('Z'); title('Peaks');

60

Matlab’s response:

Comments:

Creating the 3D mesh and a 3D surface with a higher density

meshgrid.

To find what other useful commands can be accompanied the mesh and surf

commands, use the online help.

3.2.2.1 Examination of a Function’s Critical Points

Many times, a researcher is faced with an unconstrained optimization

problem. Than is, it has a two variable function Z=f(x,y) and wants to

examine this function in a certain area in order to locate any minimum,

maximum or saddle point(s). From the previous section, it is apparent that

61

in the range [-10,10] the peaks function seems to have various critical

points. In optimization theory, a critical point can be located via the use of a

contour plot. A contour plot depicts the level curves of f(x,y) for some values

V. In other words, we project the sections/incision of various heights of the

Z=f(x,y) function in the (x,y)-plane. Matlab offers such function named as:

. Experiment with the following code to see the usefulness of contour contour

plots.

Matlab’s command:
>> V=-10:1:10; [c,h] = contour(x,y,Z,V); clabel(c,h), colorbar; hold on;

Matlab’s response:

Comments:
Creating the contour plot of the peaks function. Viewing this plot, it is
easy to identify the critical points of the function. There is one global
maximum, one global minimum, two local maxima and a local
minimum. Additionally, from the color-bar that is created with the
command: , and from the values printed next to the contour colorbar
curves, it is obvious that the peaks function around its critical points
exhibits a flatness (saddle points) (Note: the “*” that indicate a critical
point are plotted approximately); the text next to each critical point
was placed with the gtext command.

Alternatively, we can approximate the maximum of the peaks function by

searching exhaustively the matrix (to do so, we should re-define the x and Z

y vectors to have high dense). This is done with the following code:

Matlab’s command:

>> close all; x=-2:0.05:2; y=-4:0.25:4; [X,Y]=meshgrid(x,y);

62

>> Z =3*(1-X).^2.*exp(-X.^2 - (Y+1).^2) ...

 -10*(X/5-X.^3-Y.^5).*exp(-X.^2-Y.^2) ...

 -1/3*exp(-(X+1).^2 - Y.^2);

>> V=-10:1:10; [c,h] = contour(x,y,Z,V); clabel(c,h), colorbar; hold on

>> xlabel('x'); ylabel('y'); title('Contour plot of the peaks function');

>> Fmax=max(max(Z)); P=find(Z==Fmax); xy=[X(P) Y(P)];

>> plot(xy(1),xy(2),'rp', 'MarkerSize',10);

>> text(xy(1)+0.05,xy(2), 'Maximum Point');

Matlab’s response:

Comments:
Locating the maximum of the peak function via an exhaustive search.

“Fmax=max(max(Z))” stores in the maximum value of the Fmax Z

matrix that is equal to 7.9966. “P= (Z==Fmax)” returns in P the find

element index (a single value) where Z is equal to ; specifically Fmax

the Z element with index number 1343 has the value of 7.9966.
Finally, in xy we store the x-and-y coordinates of the maximum point.

‘ ” in the command creates a lager size mark symbol. MarkerSize plot

For practice try to write your own code to find the global minimum of the

peaks function (you can also try to find the local minima and maxima but

this is tricky).

63

4 Control Flow

A collection of commands that include repetition of a conditional code

segment is termed as control flow structure. In Matlab as in any

programming language, control flow commands are presented via the

execution of a conditional expression (e.g. execute a code segment if a

statement is true) that is based on logical and/or relational operators.

4.1 Logical and Relational Operators

To evaluate a conditional code, it is needed to have a Boolean expression

that takes two possible values: TRUE or FALSE. Matlab defines a TRUE

statement with the value of 1 and a FALSE with the value of 0. In Matlab

there are six relational operators: “<” (less than), “<=” (less than or equal to),

“>” (greater than), “>=” (greater than or equal to), “==” (equal to), and “~=”

(not equal to). These can be used to compare a variable to a scalar, a vector

to a vector or a multidimensional array to another one. Always the

comparisons are done element by element and the result is a

scalar/vector/matrix of the same size as then ones originally used, with

elements set to one where the relation is true and elements set to zero where

it is not.

In addition, Matlab has (at least) 3 logical operators: “&” or “&&” (logical

AND), “|” or “||” (logical OR), and “~” {logical complement - not). If we have

two matrices “A” and “B” that share the same dimensionality then:

 “A” & “B” is a matrix whose elements are 1's where both “A” and “B”

have non-zero elements, and 0's where either has a zero element. “A”

and “B” must have the same dimensions (or one can be a scalar). For

example in the case of scalars: 1 & 0, 0 & 1 and 0 & 0 will result to 0

(FALSE) while 1 & 1 is 1 (TRUE).

 “A” | “B” is a matrix whose elements are 1's where both “A” or “B” has

a non-zero element and 0's where both have zero elements. “A” and

“B” must have the same dimensions (or one can be a scalar). For

64

example and for the case of a scalar: 0 | 1, 1 | 0, and 1 | 1 is 1

(TRUE) while 0 | 0 is 0 (FALSE).

 “~A” is a matrix whose elements are 1's where “A” has zero elements and 0's

where “A” has non-zero elements. For example and in the case of a scalar:

~1 is (FALSE) and ~0 is 1 (TRUE).

Note that for Matlab, any number (integer or real, positive or negative)

different from 0 (zero) is a true statement, that is, it has the same meaning

as with 1. Pay also attention that the precedence with relational and logical

operators is the following (from highest to lowest):

1. Transpose “ .' ”, power “ .^ ”, complex conjugate transpose “ ' “,

matrix power “ ^ ”;

2. Unary plus “+”, unary minus “-“, logical negation “~”;

3. Multiplication “.*”, right division “./”, left division that returns

the inverse of a division “.\”, matrix multiplication “*”, matrix

right division “/”, matrix left division “\”;

4. Addition “+”, subtraction “-”;

5. Colon operator “:”;

6. Less than “<”, less than or equal to “<=”, greater than “>”, greater

than or equal to “>=”, equal to “==”, not equal to “~=”;

7. Element-wise logical AND “&”;

8. Element-wise logical OR “|”.

View the examples that follow to digest the use or logical and relational

operators.

Matlab’s command:

>> clear all; x=2; y=0; z=-2;

>> a=(x>=1), b=(x~=1 & y), c=(1|y & x>0), d=(~y & z | ~x == 5)

Matlab’s response:

a =
1

b =
0

c =

65

1
d =

1

Comments:
Logical and relational operations. is 1 because the statement a
evaluated is TRUE since x is 2 and greater than 1. is FALSE b
because: “ ~=1” returns 1, and “1 & ” returns 0. is TRUE because: x y c
“ >0” is 1, and “1| & 1” is “ 1 | 1” which is TRUE. is TRUE x y d
because: “~ ” is 1 and “~ ” is 0 so we have “(1 & | 0==5) that is y x z
equal to “(1 & | 0) that is equal to: “1 | 0” that is TRUE. z

Some examples with matrices and the logical and relational operators follow:

Matlab’s command:

>> clear all; x=[5 0 -1; 2 4 8]; y=[2 1 -1; 1 2 4];

>> a=(x==5), b=(x~=1 & y), c=(2*y==x | ~x), d=(x>0 | y==1 |x~=x)

Matlab’s response:

a=

1 0 0
0 0 0

b=

1 1 1
1 1 1

c=
0 1 0
1 1 1

d=

1 1 0
1 1 1

Comments:

Logical and relational operations with matrices. In we have only the a
first element to be 1 since it the only one that is equal to 5. We get b
to be a TRUE matrix because “ ~=1” returns a matrix of 1’s since none x
element is equal to 1. By definition, all elements in are taken to be y
TRUE statements. So TRUE & TRUE gives full of 1’s (Figure out how b
the and were evaluated). c d

66

4.1.1 The any and all Functions

Matlab has two build-in functions that are work as logical operators. The first

one is the function that is TRUE if any element of a vector is nonzero. any

For vectors, returns 1 if any of the elements of the vector are non-zero. any

Otherwise it returns 0. For matrices, any operates on the columns of the

matrix, returning a row vector of 1's and 0's. The second one, , becomes all

TRUE if all elements of a vector are nonzero. For vectors, all returns 1 if

none of the elements of the vector are zero. Otherwise it returns 0. For

matrices, operates on the columns of the matrix, returning a row vector of all

1's and 0's. View the following code to understand these tow function.

Matlab’s command:

>> clear all; z=[-5 2 0]; x=[5 0 -1; 2 4 8]; y=[2 1 -1; 1 2 4];

>> a1=any(z), a2=any(x), a3=any(y), a4=all(z), a5=all(x), a6=all(y)

Matlab’s response:

a1 =

1

a2 =

1 1 1

a3 =

1 1 1

a4 =

0

a5 =

1 0 1

a6 =

1 1 1

Comments:
Displaying the use of and . any all

4.2 Conditional Statements

The above section has been introduced since it is necessary for the

evaluation of conditional statements as well as loop expressions (see the

67

following section). A conditional statement is a segment of programming

code that evaluates a statement; if the statement is TRUE then it executes

some commands, otherwise if it is FALSE it runs a bulk of different

programming code. The two most important conditional statements that

Matlab materialize, is the if statement and the switch statement.

4.2.1 The if Statement

The statement evaluates a logical expression and executes a group of if

statements when the expression is TRUE. The optional elseif and else

keywords can be used for the execution of alternate groups of statements.

An keyword, which matches the terminates the last group of end if

statements. The groups of statements are delineated by the four above

keywords-no braces or brackets are involved [2]. The three possible syntax

versions of this conditional expression are tabulated in Table 7.

Table 7: The if statement syntax and examples

Syntax Example

i f logical expression

segment of programming code
executed if the logical expression
is TRUE

end

i f logical expression

segment of programming' code
executed if the logical expression
is TRUE

else

segment of programming' code
executed if the logical expression
is FALSE

end

i f logical expression #1

segment of programming code
executed if the logical expression
#1 is TRUE

e lse if logical expression #2

segment of programming code
executed if the logical expression

flag=l;

if -isempty(flag)

 disp('Hello')

end

sales=5000; if sales<1000

Profit=sales*0.1;

else

Profit=(sales-

1000)*0.2+1000*0.1;

end

sales=5000;

if (sales>1000 & sales<=2000)

disp('Low Sales');

Profit=sale*0.1;

68

#2 is TRUE

else

segment of programming code
executed if the previous logical
expressions are FALSE

end

elseif (sales>2000 & sales<=10000)

disp('Medium Sales ');

Profit=sales*0.15;

else

disp('Satisfactory Sales ');

Profit=sales*0.17;

end

Although is possible to run these examples via the command window, it is

better to use the Matlab Editor/Debugger to write a script instead. Real

examples with the conditional statements as well as with the loops are

postponed until the introduction of scripts in section 5.

4.2.2 The switch Statement

The statement executes groups of statements based on the value of a variable or switch

variable or expression. The keywords and delineate the groups. Only the case otherwise

groups. Only the first matching case is executed. There must always be an to end

to match the switch. [2]. The expression following the should be either a scalar end case

either a scalar or a string. The syntax of this conditional expression is tabulated in

tabulated in

Table 8.

Table 8: The switch statement syntax and example.

Syntax Example

switch expression

case choice #1

segment of executable
programming code

case choice #2

segment of executable
programming code

otherwise

dice=3;

switch (dice)

case 1

disp('One')

case 2

disp('Two')

case 3

disp('Three')

case 4

69

segment of executable
programming code

end

disp('Five')

case 5

disp('Five')

otherwise

disp('Six')

end

4.3 Loop Expressions

As mentioned before, loop statements are useful when a segment of

executable programming code is needed to be executed either a specific

number of times, than or as long as an expression is TRUE. The and for

loop statements are needed commands when writing efficient while

programming code.

4.3.1 The for Loop

The loop repeats a group of statements a fixed, predetermined number of times. A for

times. A matching end delineates the statements. The syntax for the loop is for

is exhibited in

Table 9.

Table 9: The for statement syntax and example.

Syntax Example

for index=frst_value : step: last_value

segment of executable programming code

end

for i =1:10

disp(i)

end

sumj=0;

for j=25:-2:-12

sumj=sumj+j;

end

The colon notation is similar as in the case of the vectors. Actually, index in

the syntax is a vector with n elements with first element being the for

first_value and last the last_value. The difference between the index elements

70

is step. Afterwards, the for statement executes n times the segment of

executable programming code moving from the first element of the index to

the last one element-by-element at each time. If step is not displayed, then

by default is set to 1.

4.3.2 The while Loop

The loop repeats a group of statements an indefinite number of times under while

under control of a logical condition. That is, as long as an expression is TRUE, then the

TRUE, then the segment of executable programming code that is included in the while

the while statement is executed. A matching delineates the statements [2]. The end

[2]. The syntax for the loop is exhibited in while

Table 10.

Table 10: The while statement syntax and example.

Syntax Example

while expression

segment of executable programming code

end

X=-3;

while X<=10

disp(X)

X=X+1;

end

4.3.3 Nested Conditional and Loop Expressions

All conditional and loop statements can be combined in any way that is

desirable. If for example a loop expression includes an statement that if

nests a statement and so on, then, in programming terminology, switch

termed that we have nested statements. As long as the statements are

nested in a logical and a non-redundant manner, the user will get

answers. View the following example that is exhibited in

Table 11 and nests various statements (figure out their use).

71

Table 11: Nested conditional and loop statements.

An example of syntax of nested conditional and loop statements

clear; flag=1; x=2*pi; temp=pi;

while x<=4*pi

figure; hold on;

X=temp:pi/10:x;

for j=1:4

subplot(2,2,j); plot(X,sin(j*X)./X, 'b:', 'LineWidth', 3);

switch (j)

case 1

title('Plot of y=sin(x)/x');

case 2

title(' Plot of y=sin(2x)/x');

case 3

title(' Plot of y=sin(3x)/x');

otherwise

title(' Plot of y=sin(4x)/x');

end

xlabel('x'); ylabel('y');

end

temp=x; x=x+pi;

end

4.3.4 Additional Control Flow Statements

Matlab has additional control flow statements that can be used to write an

executable script or function. These are more specialized statements that are

listed in Table 12. You can learn more details via the online help.

Table 12: Additional control flow statements.

Statement Comment

break

Terminates the execution of a for
or while loop. Statements in the
loop that appear after the break
statement are not executed.

continue

Passes control to the next
iteration of the for or while loop
in which it appears, skipping any
remaining statements in the
body of the loop.

72

try ... catch
Changes flow control if an error
is detected during execution.

return

Causes a normal return to the
invoking function or to the
keyboard. It also terminates
keyboard mode.

73

5 m-files: Scripts and Functions

Up to this point, all commands passed to Matlab, were done through the

command window. But when a segment of programming code is composed

from several different commands, then it is time consuming, inefficient and

quite difficult to continue using the command window. To alleviate this

peculiarity, Matlab allows for the creation of Function and scripts by using

an Editor/Debugger that looks like a text editor.

As said, functions and scripts can be created with the use of the Matlab’s

Editor/Debugger. You only have to write the command lines, save the file in

a directory of your choice and execute it by typing its name to the command

window and pressing [Enter] (you have to make sure that the Matlab’s

current directory and the directory in which you save the file are the same).

Although m-files represent a text file and it is possible to use any text editor

to create a function or a script (as long as the extension of the file is *.m this

can work), it is preferable to use the default editor because: i) when you save

a file it automatically takes the extension *.m, ii) the reserved words like: for,

while, function, end etc are blue coloured whilst comments that make the

programming code more readable are green coloured, and iii) it automatically

communicates with the command window and allows to run a script via a

command found in the editor tab.

5.1 m-files: Functions

Functions are m-files that can accept input arguments and return output

arguments. The name of the m-file and of the function should be the same.

Functions operate on variables within their own workspace, separate from

the workspace you access at the Matlab command prompt. Functions are

useful for extending the existing Matlab language for personal applications.

For example a practitioner might want to write various functions that return

the theoretical price of a call option contract according to various options

pricing models. Options pricing models like the Black and Scholes, the

74

Merton’s Jump’s diffusion, the displaced diffusion model, Heston’s

stochastic volatility model, and other can easily be implemented via a

different function.

A simple example of a function named as DiagExtract.m that takes as input

a square matrix and returns in a vector the elements of its main diagonal is

exhibited in Figure 9.

Figure 9: An example of a Function

For the function note the followings: i) if after executing your DiagExtract

function you get an error, then read the error message that it is returned to

the command window (this is very helpful in finding where to look for the

error); you have to return to the Editor to debug the error, re-save the

function and try to run it again. If you debug your function or add something,

then you have to re-save the file in order to take place the changes (note that

if unsaved changes are made in a function file, an asterisk (*) appears next

to the function name in the Editor’s title bar; ii) although the input argument

of the function is a matrix named X and the output is a vector named V,

75

when you call this function from a script or from the command window, you

can give any names you like. For example in the command window enter:

“[DiagElements]= (magic(4))” DiagExtract

to see the result; iii) After the function is executed, none of the variables that

were used are saved in the workspace; iv) If after each command line you do

not place the semi-colon “;” then when the function is executed, you can

observe in the command window the result of these command lines (this is

useful to be done when you try to debug a function); v) observe on Figure 9

that on the bottom of the Editor/Debugger there is a predefined caption area

that indicates that the current m-file is a function with the name

. DiagExtract

5.1.1 Basic Parts of a Function

A function is composed from the following parts (most of this section is

taken/copied from [2])

5.1.1.1 Function Definition Line

The function definition line informs Matlab that the m-file contains a

function, and specifies the argument calling sequence of the function. For

example, the function definition line for the function (that computes average

the average of a vector) could be:

Figure 10: Function Definition Line

Matlab function names have the same constraints as variable names. The

name must begin with a letter, which may be followed by any combination of

76

letters, digits, and underscores. Making all letters in the name lowercase is

recommended as it makes your m-files portable between platforms (of course

the use of upper case assures that the function names you create do not

resemble any other Matlab function and/or reserved word). The name of the

text file that contains a Matlab function consists of the function name with

the extension .m appended. For example, “ .m”. DiagExtract

If the filename and the function definition line name are different, the internal

(function) name is ignored. Thus, if “ .m” is the file that defines a DiagExtract

function named: , you would invoke the function by diagonal_extraction

typing in the command window:

“ ” DiagExtract

Concerning function arguments, if the function has multiple output values,

enclose the output argument list in square brackets “[]”. Input arguments, if

present, are enclosed in parentheses “()”. Use commas to separate multiple

inputs or output arguments. Here's a more complicated example:

“function [Abs, Mean, Std] = (X, Y, Z)” StatistiS

If there is no output, leave the output blank:

“ (x)” function print_results

or use empty square brackets:

“ [] = (x)” function print_results

The variables that you pass to the function do not need to have the same

name as those in the function definition line.

5.1.1.2 The H1 Line

The H1 line, so named because it is the first help text line, is a comment line

immediately following the function definition line. Because it consists of

comment text, the H1 line begins with a percent sign, "%." For the

DiagExtract, the H1 line is:

“% DiagExtract returns the diagonal elements of a square matrix (not single values).”

77

This is the first line of text that appears when a user types help

function_name at the Matlab prompt. Further, the searches and lookfor

displays only the H1 line of the function. Because this line provides

important summary information about the m-file, it is important to make it

as descriptive as possible.

5.1.1.3 The Help Text

You can create online help for your m-files by entering text on one or more

comment lines beginning with the line immediately following the H1 line. The

help text for the function is: DiagExtract

“% This function takes as input a square matrix named X and does the followings:

% 1. If by mistake the user does not enter a square matrix, it returns

% an error message

% 2. If a square matrix is correctly entered, then it returns the

% elements of its main diagonal in vector V ”

When you type function_name, Matlab displays the comment lines that help

appear between the function definition line and the first non-comment

(executable or blank) line. The help system ignores any comment lines that

appear after this help block.

5.1.1.4 The Body Text

The function body contains all the Matlab code that performs computations

and assigns values to output arguments. The statements in the function

body can consist of function calls, programming constructs like flow control

and interactive input/output, calculations, assignments, comments, and

blank lines.

For example, the body of the function contains a number of DiagExtract

simple programming statements:

“% Author: Panayiotis Andreou, Sept. 2003

78

% This function uses the error build-in function that displays a message

% and aborts the function's execution

[m, n]=size(X); %Saving the size of the matrix

if isempty(X) %Checking if it is an empty matrix

error('You have not passed a square matrix');

elseif (m~=n) %Checking if matrix is square

error('You have enter a non square matrix');

elseif (m==n & m==1) %Checking if it is a single value

error('You have enter a single value');

else

Ind=(1:n:n^2)+(0:n-1); %Finding the indeces of the diagonal elements

V=X(Ind); %Extracting to V the diagonal elements

end ”

5.2 Scripts

On the other hand, scripts can operate on existing data in the workspace, or

they can create new data on which to operate. Although scripts do not

return output arguments, any variables that they create remain in the

workspace, to be used in subsequent computations. In addition, scripts can

produce graphical output using function. Scripts are useful for automating a

series of steps that are needed to be performed many times (e.g. to create a

script that calls various options pricing function in order to price a call option

and compare the pricing accuracy of each model).

Unlike function, a script has no a specific structure. It includes a number of

commands that are serially executed. As long as the command series has a

logical interpretation, the script will result to the desire output. Remember

that a script does not take and does not return input and output arguments

respectively. The vectors and matrices (variables or scalars) are stored in the

Matlab’s workspace. An example of a script follows.

Let’s say that we need to create a script with the name “CompuStat.m” that

79

should store in a vector named , the mean, standard deviation, median, Data

covariance, minimum and maximum of the main diagonal of a magic square.

Figure 11, shows how a version of such a script might look like for an 8-by-8

magic square.

Figure 11: An example of a script

Try to see what this script does. After executing the script, figure out what is

the difference between the command and the . Use the command disp fprintf

to view the script’s variables that are saved in the workspace. Notice who

that a script does not has the same structure as a function. Moreover,

observe on Figure 11 that on the bottom of the Editor/Debugger there is a

predefined caption area that indicates that the current m-file is a script.

Important Note: when you start writing scripts and function that are stored

in a certain directory, you occasional need to see what files are included in

this directory. To do so, from the command window you can use the dir

command (the same one as used in the MS-DOS) to view the contents of

Matlab’s current directory or to view all m-files in the directory. what

Additionally, you can use cd directory_name to set the current directory to

80

the one specified and to move to the directory above the current one. cd..

Moreover, file_name deletes the specified file, and prints on the delete pwd

screen the current directory.

5.3 Testing and Debugging

Matlab provides several tools for testing and debugging programs (either

functions or scripts) to ensure they produced the expected results. A (non-

trivial) program hardly ever works correctly for all possible cases

straightaway. It requires thorough testing and debugging.

Potential errors or pieces of code that could cause unwanted effects

(warning) can be identified by using Matlab Editor. If the code in the Matlab

editor looks different from what you expect there is probably a syntax error.

E.g.:

 A string (text) must be displayed in purple. If it is red, you probably

forgot the second ‘ to end the text.

 When key words like , or are underlined in red, the while for if

corresponding is missing. end

 When the indentation looks weird, first try to mark the piece of code

and on Editor tab, in the Edit section, click on smart indent (or press

[ctrl]+[i]). If this does not help, look for a forgotten end.

Matlab Editor underlines suspicious commands in red for errors and in

orange for warnings. When you move the mouse pointer over the mark, a

pop-up box tells you about the potential problem. When you click into the

box, you will get more information, and frequently a suggested replacement

for the particular code as shown in Figure 12. (Note that not always the

suggested replacement is the answer for correcting the error or warning.) In

addition, Matlab considers it to be good style to suppress all command line

outputs from within functions and scripts by using “;” and will mark all lines

without semicolon. If you want to have the command line output, just ignore

the red line or click with a right click on the marked “=” and choose

“suppress this instance” from the pop-up menu. Finally when writing a

81

function, Matlab marks variables that do not contribute to the calculations of

the output(s) of the function i.e. are defined but not further used in the

function. Consider if you really need them or if you can get rid of the

command to keep your program as simple and clear as possible and to avoid

using more memory capacity than necessary.

Figure 12: Warnings indication

5.3.1 Code Sections

When testing a program it usually helps to look only at a sub-problem at a

time. The Matlab editor provides a convenient way to do so, using code

sections also known as code cells or cell mode. A code section contains

contiguous lines of code that you want to evaluate as a group. Sections are

marked by two percent signs (“%%”) in the line before the program lines

start. “%%” can be followed by comments. These comments are displayed in

bold, a very convenient way to have titles for programming blocks. Figure 13

shows a script named sine_wave that uses the code sections. You can run

individual sections without running the rest of the code by clicking on the

section (the current section is marked in yellow) and on the Editor tab, in

the Run section, click Run Section. You can also run the code in the current

section, and then move to the next section by clicking on Run and Advance.

82

Figure 13: Script with code sections

Finally, you can increment numbers within a section, rerunning that section

after every change. This helps you fine-tune and experiment with your code.

To increment or decrement a number in a section:

 Highlight or place your cursor next to the number.

 Right-click to open the context menu.

 Select Increment Value and Run Section. A small dialog box appears

as shown in Figure 14.

Figure 14: Increment Value dialog box

 Input appropriate values in the / text box or the / text box.

 Click the , , , or button to add to, subtract from, multiply,

or divide the selected number in your section. Matlab runs the section

after every click.

83

5.3.2 Debugging

If a program does not produce the expected results, you will have to find out

if the error is in the algorithm or in the implementation. Therefore, you need

to follow the program step by step and compare the results of the program

with your expectations. To assist you in this procedure, in addition to the

section code described above, Matlab editor also provides the debugger.

In order to pause the execution of the m-file, so you can examine values

where you think the problem can be, you need to set a breakpoint.

Breakpoints are introduced by clicking on the “-“ between the line number

and the desired line in the Matlab editor as shown in Figure 7.A red dot

appears, showing that a breakpoint is set. If you make changes to the file or

there is a syntax error in the file, the dot will turn grey until you correct the

syntax errors, if any, and save the file. Note that you can only set valid

breakpoints at executable lines in saved files that are in the current folder or

in folders on the search path. When you add a breakpoint in a file that is not

in a folder on the search path or in the current folder, a dialog box appears.

This dialog box presents options that allow you to add or remove the

breakpoint. You can either change the current folder to the folder containing

the file, or you can add the folder containing the file to the search path.

After setting breakpoints, you can run the file from the command window or

the Matlab editor. If you are working on a function with input arguments, you

need to start it from the command window (otherwise Matlab would not

know the input arguments). If no input arguments are needed, you can also

click on Run in the Run Section of the Editor tab. Matlab will execute the

commands until the first breakpoint is reached and stop there. In the

command window you will see K>> to indicate that Matlab is in debugging

mode. The current m-file line is marked with a green arrow in the editor.

While the program is paused, you can view the list of current variables in the

workspace window (if you need to change to another workspace and view its

variables, use Function Call Stack drop-down list on the Editor tab, in the

Debug section). Examine values when you want to see whether a line of code

has produced the expected result or not. You can access these variables by:

84

 Double clicking in the workspace window to open the array editor

Figure 15. The Variables Editor opens, displaying the content for that

variable. You can even change the value in the Variables Editor, but

you should usually restrain from doing so if you want to do your

operations reproducibly.

Figure 15: Variables Editor

 Typing the name of the variable in the command window and you will

get the value displayed as text message.

 Placing the tip of your mouse pointer on a variable name in the editor

window, a small window will pop up, showing type and value of the

variable. (This of course only works for variables introduced in

program lines, which were already processed.)

If the result is not as you expect, then that line, or a previous line, contains

an error make the necessary changes, save and rerun the program. If the

result is as expected, continue running or step to the next line. To continue,

you have the following options, in the Debug section on the Editor tap:

 Continue (): continue the program until the next breakpoint or the

end of the file is reached.

 Step (): process one line of program code and stop again. The

displayed variables will change their values according to the

operations performed.

 Step in (): step into (sub-) function or (sub-) script (if the next line is

no call of a function or script, it does the same as step).

 Step out (): go back from a (sub-) function or script to the program

85

from where it was called.

 Exit debug mode (): continue the program to the end without

stopping at breakpoints.

To delete a breakpoint click again on the red (or grey) dot. If you want to

clear all breakpoints, on the Editor tab, in the Breakpoints section, click on

breakpoints and then clear all.

Finally you can set error breakpoints to stop program execution and enter

debug mode when Matlab encounters a problem. Unlike standard

breakpoints, you do not set these breakpoints at a specific line in a specific

file. Rather, once set, Matlab stops at any line in any file when the error

condition specified by using the error breakpoint occurs. Matlab then enters

debug mode and opens the file containing the error, with the pause indicator

at the line containing the error. To introduced such error breakpoints, in the

Editor tab, in the Breakpoints section, click on breakpoints and then select

Stop on Errors to stop on all errors and/or Stop on Warnings to stop on all

warnings.

86

6 Cells and Structures

Structures are collections of different kinds of data organized by named

fields. Cell arrays are a special class of Matlab arrays whose elements

consist of cells that themselves contain Matlab arrays. Both structures and

cell arrays provide a hierarchical storage mechanism for dissimilar kinds of

data. They differ from each other primarily in the way they organize data.

You access data in structures using named fields, while in cell arrays data is

accessed through matrix indexing operations [2].

6.1 Cells

A cell array is a Matlab array for which the elements are cells, containers

that can hold other Matlab arrays. For example, one cell of a cell array might

contain a real matrix, another an array of text strings, and another a vector

of complex values [2]. Moreover, you can build cell arrays of any valid size or

shape, including multidimensional structure arrays. Figure 16 gives an

illustration on how a 2-by-2 cell array might look.

Figure 16: A 2-by-2 cell array

To create a cell array use the command: cell. For example if we want A to be

a 3-by-3 cell array, then you should use the following syntax:

“A= (3,3)” cell

to get:

87

“A =

[] [] []

[] [] []

 [] [] [] “

That is, the has been created to be a 3-by-3 empty cell array. The cells A

identification is the same as with matrices. The upper left cell

location/position is (1,1), the next cell in the same row is (1,2) and so on

(single value indexing is allowed also). You can fill a cell array by assigning

data to individual cells one at a time always supporting the correct cell

location/index. Matlab has two default ways to store data (scalars, vectors,

matrices, strings, cells, etc) to cells:

6.1.1 Cell indexing

Enclose the cell subscripts in parentheses using standard array notation.

Enclose the cell contents on the right side of the assignment statement in

curly braces, "{}" [2]. For example:

“A(1,1) = {[1 4 3; 0 5 8; 7 2 9]}; A(1,2) = {'Anne Smith'};

A(2,1) = {3+7i}; A(2,2) = {-pi:pi/10:pi}; A(2,3)={5};

G=cell(2,1); G(1,1)= {[5 6 9]}; G(2,1)={'Hello World'};

A(3,1) = {G}; A(3,3)={ones(2,2)}; ”

After assigning the cells, in the command window type: “A” to get:

“A =

[3x3 double] 'Anne Smith' []

[3.0000+ 7.0000i] [1x21 double] [5]

{2x1 cell } [] [2x2 double] ”

88

6.1.2 Content indexing

Enclose the cell subscripts in curly braces using standard array notation.

Specify the cell contents on the right side of the assignment statement [2].

For example:

“A{1,1} = [1 4 3; 0 5 8; 7 2 9]; A{1,2} = 'Anne Smith';

A{2,1} = 3+7i; A{2,2} = -pi:pi/10:pi; A{2,3}=5;

G=cell(2,1); G{1,1}= [5 6 9]; G{2,1}='Hello World';

A{3,1} = G; A{3,3}=ones(2,2); ”

produces the same cell array as before.

If you assign data to a cell that is outside the dimensions of the current array,

Matlab automatically expands the array to include the subscripts you specify. It

fills any intervening cells with empty matrices. For example, the assignment

below turns the 3-by-3 cell array into a 3-by-4 cell array [2] (note that the A

same holds for vectors and matrices with the only difference that empty

elements are assigned with zero values).

“A{3,4}='This expands the cell array';” to get:

“A =

[3x3 double] 'Anne Smith' []

[3.0000+ 7.0000i] [1x21 double] [5]

{2x1 cell } [] [2x2 double] ”

The only difference between the cell command and the cell and content

indexing is that by using cell you pre-allocating the cell’s dimensions.

You can use content indexing on the right side of an assignment to access

some or all of the data in a single cell. Specify the variable to receive the cell

contents on the left side of the assignment. Enclose the cell index expression

on the right side of the assignment in curly braces. This indicates that you

are assigning cell contents, not the cells themselves. For example, to store to

89

 the 3-by-3 matrix that is located in A(1,1), you should do the following: B

“B= {1,1};” cell

to get:

“B =

1 4 3

0 5 8

7 2 9”

and to save in the 2nd and 3rd elements of the vector that is saved in the (1,1) C

cell of which is saved in the (3,1) cell of you do the following: G A

“C= A{3,1}{1,1}(2:3)”

to get:

“C =

6 9”

If you like to save in the cells (1,2) to (2,3) of A (that is to create a 2-by-2 cell D

array) you do the following:

“D=A(1:2,2:3)”

to get:

“D =

'Anne Smith' []
[1x21 double] [5]

So, if “{ }” are used after a cell array then Matlab returns the array’s contents

but if “()” are used instead, then it returns cells. To access sub-sets of

information stored in a cell use first “{ }” to access the cell and after used “()”

to access the info you want.

90

Before leaving this section, notice the existence of two very useful cellarrays

Functions. These are: that recursively displays the contents of a cell celldisp

array, and displays the structure of a cell array as nested coloured cellplot

boxes. Further info for cell arrays can be obtained from the Matlab’s online

help facilities.

6.2 Structures

Structures are Matlab arrays with named data container' called fields. The

fields of a structure can contain any kind of data. For example, one field

might contain a text string representing a name, another might contain a

scalar representing a billing amount, a third might hold a matrix of medical

test results, and so on. Like standard arrays, structures are inherently array

oriented. A single structure is a 1-by-1 structure array, just as the value 5 is

a 1-by-1 numeric array. You can build structure arrays with any valid size or

shape, including multidimensional structure arrays (see figure below) [2].

Figure 17: Example of stricter (Figure copied from [2])

Structures can be created either by using assignment statements or by

using the function. struct

6.2.1 Building structure arrays using assignment statements

You can build a simple 1-by-1 structure array by assigning data to individual

fields. Matlab automatically builds the structure as you go along. For

example, create the 1-by-1 patient structure array shown at the beginning of

this section [2]:

91

“patient.name = 'John Doe';
 patient.billing = 127.00;
 patient.test = [79 75 73; 180 178 177.5; 220 210 205]; “

and if you type: “patient” in the command window you get:

“patient =

name: 'John Doe' billing: 127

 test: [3x3 double] ”

that is an array containing a structure with three fields. To expand the

structure array, add subscripts after the structure name:

“patient(2).name = 'Ann Lane'; patient(2).billing = 28.50;

patient(2).test = [68 70 68; 118 118 119; 172 170 169];” and if you

again type: “patient” you will get:

“patient =

1x2 struct array with fields: name
 billing
 test ”

The patient structure array now has size [1 2]. Note that once a structure

array contains more than a single element, Matlab does not display

individual field contents when you type the array name. Instead, it shows a

summary of the kind of information the structure contains.

You can also use the function to obtain this information. fieldnames

returns a cell array of strings containing field names (see the fieldnames

online help).

As you expand the structure, Matlab fills in unspecified fields with empty

matrices so that:

 All structures in the array have the same number of fields

 All fields have the same field names

92

For example, entering ‘patient(3).name = 'Alan Johnson' ” expands the

patient array to size [1 3]. Now both “patient(3).billing” and “patient(3).test”

contain empty matrices. To see this, type: “patient(3)” to get:

“ans =

name: 'Alan Johnson' billing: []

test: [] ”

6.2.2 Building structure arrays using the struct function

You can pre-allocate an array of structures with the function. Its basic struct

form is [2]:

“str_array = (‘field1’, val1, ‘field2’,val2, ...)” struct

where the arguments are field names and their corresponding values. A field

value can be a single value, represented by any Matlab data construct, or a

cell array of values. All field values in the argument list must be of the same

scale (single value or cell array). To create the structure with the patient info

shown before you should have the following syntax (the first command line

instructs for the creation of a 1-by-3 structure will all fields set to empty):

“patient(3)= struct ('name',[],'billing',[],'test',[]);
patient(1)=struct('name', 'John Doe', 'billing', 127.00, 'test', ...

[79 75 73; 180 178 177.5; 220 210 205]);
patient(2)=struct('name', 'Ann Lane', 'billing', 28.50, 'test', ...

[68 70 68; 118 118 119; 172 170 169]);
patient(3)=struct('name', 'Alan Johnson', 'billing', [], 'test', []);”

The view an entire field this can be done with the following example syntax:

“structure_name.field_name”

For example type: “patient.name” in the command window to get:

“patient.name

93

ans =

John Doe

ans =

Ann Lane

ans =

Alan Johnson ”

To view the fields data associated with a certain structure entry, the calling

syntax should be of the form:

“structure_name(index_of_entry)”

For example type: “patient(2)” in the command window to get:

“ans =

name: 'Ann Lane' billing: 28.5000 test: [3x3 double] ”

To manipulate sub-data on data stored under a fields name for a specific

entry, the calling syntax should be of the form:

“structure_name(index_of_entry).field_name() ”

For example type: “patient(2).test(2:end,1:end-1)” in the command windowto get:

“ans =

118 118
172 170 ”

Useful build-infunction that can make the structures handling much easier

include:

 to get structure field names fieldnames

 that can be used to get structures’ fields getfield

 that returns a TRUE if field is in structure array isfield

94

 that can be used to delete a structure’s field rmfield

 that can be used to assign a structure field setfield

Structures and cell arrays are very useful when you need to write a program

that handles various data types. It is a challenge to work with such data

types. Before attempting writing a segment of programming code based on

these make sure that you have spent a lot of time reading the Matlab’s

online help.

95

7 Entering and Saving Data Files

Matlab can be used to both load a file of data from an external source and to

save to your PC data-sets that are located in the workspace or that are

created from a function. When you have to deal with small amount of data,

then you can enter them by hand either in the command window or in the

Editor/Debugger. But when you have to work with a large amount of data

retrieved by an external source (e.g. you need to process the historical daily

prices for S&P 500 from 1985 to 1999, saved in a file that was downloaded

from the Internet), then it is an imperative need to import those data either

invoking a graphical user interface i.e. interactively or using some build-in

function that can read files of data.

7.1 Import Data Interactively

To retrieve data form an external source interactively you can either double-

click a file name in the Current Folder browser or on the Home tab, in the

Variable section, select Import Data. The imported file can be a text file, a

data file or Excel file. Once the file is open the import tool as shown in

Figure 18 will appear providing a view to the data in the file. Note that for

large files only a beginning subset of the data is loaded in the preview,

therefore you can create a custom import to load in part of the large data file

without having to use the memory required to load in the entire data file.

The initial setting for formatting, variables names and type of the imported

data are educated choices by the tool based on file structure and type.

However all of the choices can be modified by the user.

96

Figure 18: The import tool

In the example shown in Figure 18 the variable in column B is date but it is

read as text. This can be modified by clicking on the corresponding Type and

select the correct one. Then if you hover over a cell you can see how the data

will be imported. In the case of column I (named Cusip) since the majority of

the data are number, the tool choses as a type for this column number.

However this is wrong since some of the entries have characters in them.

You can alter the type to text by clicking on the type on column I. Similarly,

the column O (named XRD) the majority of data are missing thus the tool

chooses the default type that is text. Empty cells are automatically replaced

by a NaN value, but this is also adjustable in the Unimportable Cells section.

By default the data will be import as a column vectors however you could

choose to bring them in either as a numeric matrix or cell array. Moreover

you can adjust the columns and rows of the data you wish to bring in by

either highlighting the section or by entering the range in the corresponding

text box.

97

Figure 19: Importing choces

Once you have establish the way you wish to import the data, you either

import the data directly into Matlab workspace, by selecting Import Data, in

the Import section on the Import tab, or you can generate a script or a

function by selecting the corresponding option in the same menu (Figure

19). By generating the code you can make it easier to repeat the data import

process. If the generate function option is used, then the function in Figure

20 is automatically produced. Therefore, saving this function can be used to

import the same or similar data.

Figure 20: Automatically generated function for importing data

98

7.2 Import Data using build-in functions

Matlab provides a variety of functions that can be used to read data files.

Using this approach you could read more complex and non-standard format

files, have more control over importing options and automate the importing

of one for many files.

The Table 13 shows the supported file types and the associated function to

read them.

Table 13: File formats that Matlab can handle

File

Content Extension Description

Import

Function

Export

Function

MATLAB

formatted

data

MAT

Saved MATLAB

workspace
load save

Partial access of

variables in

MATLAB

workspace

matfile matfile

Text

any, including:

CSV

TXT

Comma

delimited

numbers

csvread csvwrite

Delimited

numbers
dlmread dlmwrite

Delimited

numbers, or a

mix of strings

and numbers

textscan none

Column-

oriented

delimited

numbers or a

mix of strings

and numbers

readtable writetable

Spreadsheet

XLS

XLSX

XLSM

XLSB (Systems

with Microsoft®Excel® for

Windows® only)

Worksheet or

range of

spreadsheet

xlsread xlswrite

Column-

oriented data in

worksheet or

range of

spreadsheet

readtable writetable

99

Use Matlab help documentation for the syntax of each of the function.

Moreover, you can browse for them by clicking on in the command

window and then selecting Data Import and Export. As shown in the Figure

21 the functions are categorised based on the file type that they are

associated with. When choosing each of the function Matlab provides a quick

help about the syntax of each of the function.

Figure 21: Browsing through data import functions in the command window.

100

8 Data Analysis

Matlab has many capabilities for data analysis. In addition to the build-in

functions, Matlab also provides functions for data analysis by the Statistical

Toolbox and the Econometric toolbox. Therefore using Matlab you can

perform from simple statistical analysis like describing the features of a data

sample and correlation analysis to advance analysis like linear and non-

linear regression. Moreover, you can also write your own functions to

implement particular algorithm required from the analysis. This section will

introduced basic functions used for univariate analysis of your data and

then provide same basics for linear and logistic regression analysis.

8.1 Descriptive statistics

Matlab provides functions for describing the features of a data sample.

These descriptive statistics include measures of location and spread,

percentile estimates and functions for dealing with data having missing

values. The Table 14 shows the most important ones with a brief description

of their use.

Table 14: Functions for descriptive statistics

Function Name Description
corr Linear or Rank Correlation Coefficient

corrcoef
Linear Correlation Coefficient with Confidence
intervals

cov Covariance Matrix

geomean Geometric Mean

grpstats Summary Statistics by Group

kurtosis Kurtosis

mad Median Absolute Deviation

median 50th Percentile of a Sample

moment Moments of a Sample

nanstat

Descriptive Statistic ignoring NaNs (missing data)
Replace the particle stat by one of the following

names: or . max, min, std, mean, median, sum var

101

prctile Percentiles

quantile Quantiles

range Range

skewness Skewness

std Standard deviation

var Variance

As an example, let’s find some sample statistics of the time series variables

, xt and generated in the first code section of the script shown in Figure wt at

22. Before doing it, we must know that in a data matrix, MATLAB

automatically interprets columns as samples and rows as observations.

Therefore, the output of all these functions applied to the data matrix is a

row vector with its i
th element being the value of the statistics for the ith

column. Let’s now calculate the mean, standard deviation, median,

skewness, kurtosis, and the 25th and 75th Percentile of the selected series by

running the second section of the script. Note that to display the output all

the results can be written in a cell table as shown in the final section of the

script.

Figure 22: Script for generating descriptive statistics

102

8.2 Statistical plots

The graphical methods of data analysis are as important as the descriptive

statistics to collect information from the data. There is an extended support

for box plots, normal probability plots, Weibull probability plots, control

charts, quantile-quantile plots and polynomial curve fitting and prediction.

There are also functions to create scatter plots or matrices of scatter plots

for grouped data, and to identify points interactively on such plots. It is true

that the best way of plotting some data strongly depends on their own

nature. Thus, for instance, qualitative data information might be

summarized in pie charts or bars, while quantitative data in scatter plots.

The Table 15 shows some of the most known specialized graphs.

Table 15: Functions for Statistical Plotting

Stat is t ical
P lo tt ing

Descr ip t ion

bar Data plotting in vertical bars

barh Data plotting in hertical bars

boxplot Boxplots of a data matrix (one per column)

cdfplot Plot of empirical cumulative distribution function

ecdfhist Histogram calculated from empirical cdf

gline Point, drag and click line drawing on figures

gplotmatrix
Matrix of scatter plots grouped by a common

variable

gscatter Scatter plot of two variables grouped by a third

hist Histogram

hist3 Three-dimensional histogram of bivariate data

ksdensity Kernel smoothing density estimation

lsline Add least-square fit line to scatter plot

normplot Normal probability plot

parallelcoords Parallel coordinates plot for multivariate data

Pie Pie chart of data

scatter Scatter plot of two variables

stem Plot of discrete data as lines (stems) with a marker

probplot Probability plot

qqplot Quantile-Quantile plot

Obviously, the histogram is the most popular in describing a sample. Let's

103

find out how to use it. Extending the above script variable is a vector of X

1000 standard normal random numbers. We will obtain the histogram for

each variable and a 3-D version of the histogram for both at the same time

by running the following code:

“%% Continue from the previous sections to plot histograms

X = normrnd(0,1,1000,1); % generates 1000 random numbers from the

 % normal distribution with mean 0 and standard

 % deviation 1

figure(1),hist(X) % Histogram of X

figure(2),hist(a) % Histogram of a

figure(3),hist3([X a]) % Histogram of the bivariate sample [X,a]

figure(4),hist([X;10;-10]) % Histogram of X contaminated with two outliers”

The resulting figures are as shown in Figure 23.

Figure 23: Plotting Histograms output

104

The histograms serve mainly for giving a first view of the shape of the

distribution, and thus infer whether the data come from a given known

distribution. Moreover, they also serve to detect outliers, as shown in the

bottom-right figure above. This also shows the histogram of X, but after

adding two “large” (in absolute value) observations. It is clear that these two

outliers significantly change the shape of the histogram.

8.3 Statistical Tests

Matlab provides functions for performing a variety of statistical tests. In

deciding which test is appropriate to use, it is important to consider the type

of variables that you have (i.e., whether your variables are categorical,

ordinal or interval and whether they are normally distributed). Table 16

summarise some of the most commonly used tests:

105

Table 16: List of Statistical tests when to be used and the corresponding Matlab

function

Nature of

Independent

Variable

Nature of

Dependent

Variable(s)

Test(s)

Matlab

function

 0 IVs

(1 population)

interval & normal one-sample t-test ttest

ordinal or interval
one-sample

median
signrank

categorical

 (2 categories)
binomial test binofit

categorical
Chi-square

goodness-of-fit
chi2gof

 1 IV with 2

levels

(independent

groups)

interval & normal
2 independent

sample t-test
ttest2

ordinal or interval
Wilcoxon-Mann

Whitney test
ranksum

categorical

Chi- square test crosstab

Fisher's exact

test
fishertest

1 IV with 2 or

more levels

(independent

groups)

interval & normal one-way ANOVA anova

ordinal or interval Kruskal Wallis kruskalwallis

categorical Chi- square test crosstab

1 IV with 2 levels

(dependent/matc

hed groups)

interval & normal paired t-test ttest

ordinal or interval
Wilcoxon signed

ranks test
signrank

categorical McNemar mcnemar

The last function in the Table 16, can be retrieved from Matlab mcnemar,

File Exchange website.

As an example, let’s perform one sample t-test that allows us to test whether

a sample mean (of a normally distributed interval variable) significantly

106

differs from a hypothesized value. Therefore to check if the mean of the

variable as previously generate, differs from zero type the following X,

command:

“[h,p,ci,stats] = (X,0);” ttest

The function returns four variables. The binary variable that is the ttest h,

hypothesis test result, that takes the value of 1 if the null hypothesis is

rejected and otherwise the value of zero. In this case as expected the variable

h is zero this indicates indicates a failure to reject the null hypothesis (i.e.

the mean of Variable X = 0). Note since we have not specified the level of

significance for accepting or rejecting the null hypothesis Matlab uses the

default that is 0.05. The second output of the function is the variable , p

which is the p-value of the test. The third output is the two-element vector

, that containsthe lower and upper boundaries of the 100 × (1 – Alpha)% ci

confidence interval. Finally, the fourth output is a structure, stats, that

contains the following fields:

 tstat, Value of the test statistic.

 df, Degrees of freedom of the test.

 Sd, Estimated population standard deviation.

8.4 Regression Analysis

Matlab offers a variety of functions to perform different type of regressions

like Linear Regression, Generalized Linear Models and Nonlinear Regression.

Those functions are mostly located in the Statistical Toolbox, however the

Econometric Toolbox has also a number of function to perform a particular

regression analysis. In this section only linear and logistic models are

presented.

107

8.4.1 Linear Regression - ordinary least squares (OLS)

Linear regression is used to predict the value of a dependent variable (Y)

from the value(s) of independent variable(s) (Xi). The relationship is given by

the equation:

𝑌 = 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 … + 𝛽𝑖𝑋𝑖 + 𝜖

where α is the constant term, 𝛽𝑖 is coefficient corresponding to the ith

independent variable, and ε is an error term that is normally distributed

with zero mean and constant variance.

Matlab has two basic functions for performing this linear regression: regress

and . Both of them, in addition to the regression coefficient, can regstats

return statistics that are useful in assessing the model (like r-square). The

main inputs of both of those functions are two numeric variables that is a Y

vector variable corresponding to the depended variable and the variable X

that can be either a vector or matrix that have each of the independent

variables in columns, therefore each column represents an explanatory

variable and each row represents an observation. Missing data are allowed

in both Y and X, and those observations are automatically removed. Note

that in the case of the function a column of all ones is needed to regress

include the constant term in the model.

The example in Figure 24 shows the use of both of those functions. In this

example data are loaded from the file “RegressionAnalysisData.mat” that

contains several vectors variables: Year, gvkey, FF48, log_Salary, lag1_ROA,

. All those variables are either lag1_Return, lag1_log_at, lag1_mb and Duality

directly taken or calculated from data from Compustat and Execucomp.

After loading the data we are running regression model a using as depended

variable the and independent variables: log_Salary lag1_ROA, lag1_Return

. lag1_log_at and lag1_MB

108

Figure 24: Linear Regression example script using regress and regstats functions

Executing the code in the section produced the results from both functions.

The results are identical but are given in different form. The function regress

returns five outputs:

 the vector of coefficient estimates b

 the matrix of 95% confidence intervals for the coefficient bint

estimates

 the vector of residuals r

 the matrix of intervals that can be used to diagnose outliers. If rint

the interval rint(i,:) for observation i does not contain zero, the

corresponding residual is larger than expected in 95% of new

observations, suggesting an outlier

 the vector that contains, in order, the R2 statistic, the F statistic stats

and its p value, and an estimate of the error variance.

The function returns a structure that contains regstats StatsReg

significantly more information about the regression model. Its fields are

shown in the Table 17

109

Table 17: Fields of the ouput structure of function regstats

Field Description

Q Q from the QR decomposition of the design matrix

R R from the QR decomposition of the design matrix

beta Regression coefficients

covb Covariance of regression coefficients

yhat Fitted values of the response data

r Residuals

mse Mean squared error

rsquare R2 statistic

adjrsquare Adjusted R2 statistic

leverage Leverage

hatmat Hat matrix

s2_i Delete-1 variance

beta_i Delete-1 coefficients

standres Standardized residuals

studres Studentized residuals

dfbetas Scaled change in regression coefficients

dffit Change in fitted values

dffits Scaled change in fitted values

covratio Change in covariance

cookd Cook's distance

tstat t statistics and p-values for coefficients

fstat F statistic and p-value

dwstat Durbin-Watson statistic and p-value

Recently a new function has been added for performing linear regression, it

is called . The next section in the code, Figure 25, shows the syntax of fitlm

this function (as always using Matlab help, you can obtain more details

110

about using the function with given examples). One advantage of this

function is the way that the results are output. Note that by allowing Matlab

to write in the Command Window (i.e. no “;” at the end of the command) a

summary of the results is displayed. The output of this function is also an

object (structure) that contains various fields, including a table with

coefficient estimates with the corresponding standard errors, t-statistics and

p-values, several measurements helpful in finding outliers and influential

observations, and different measurements of residuals. The complete

description of the output can be found in Matlab help.

Figure 25: Code section for performing linear regression using fitlm

Working with panel data fixed effects regressions are very important, as data

often fall into categories such as industries, states, families, etc. When you

have data that fall into such categories, you will normally want to control for

characteristics of those categories that might affect the dependent variable.

Unfortunately, you can never be certain that you have all the relevant

control variables, so you will have to worry about unobservable factors that

are correlated with the variables that you included in the regression.

Omitted variable bias would result. If you believe that these unobservable

factors are time-invariant, then fixed effects regression will eliminate omitted

variable bias. In estimating fixed effect model a dummy variable for each

group is included, leaving out one group (that will be the reference group)

Continuing on the previous example, the code section shown in the figure ()

illustrate an easy way to construct those dummy variables for both and Year

variables using the functions and . Then those FF48 categorical dummyvar

variables are included in the model, remembering to omit one of them.

Figure 26: Code section to create Fixed Effects Variables

111

Moreover, using the function this operation can be even simpler. Note fitlm

that using function random effects can also be included in the model. fitlm

The code section as in Figure 27 shows how to use this function and include

fixed effects. In this example the vectors are converted to Matlab data

structure called . Then variables and of the table Table Year FF48 InputTable

are converted to categorical ones and the regression model is specified by

using variables names.

Figure 27: Code section for performing linear regression using fixed effects with fitlm

function

In regression analysis, basic forms of models make use of the assumption

that the errors have the same variance across all observation points. When

this is not the case, the errors are said to be heteroscedastic. If there exists

heteroscedasticity then estimators of parameters for linear regression are

still unbiased and consistent, but the standard errors are not efficient. For

this case a function named from the econometric toolbox can be used to hac

perform the regression.

8.4.2 Logistic Regression

Binary logistic regression models are based on a dependent variable that can

take on only one of two values. In this setting, the independent (sometimes

called explanatory or predictor) variables are used for predicting the

probability of occurrence of an outcome. The independent variables can be

either continuous or categorical.

Logistic analysis is used to create an equation that can be used to predict

112

the probability of occurrence of the outcome of interest, to assess the relative

importance of independent variables, and to calculate odds ratios that

measure the importance of an independent variable relative to the response.

The odd of an event measures the expected number of times an event will

occur relative to the number of times it will not occur. Thus, if the odds of an

event is 5, this indicates that we expect five times as many occurrences as

non -occurrences.

The logistic equation is given by:

𝑝(𝑌) =
𝑒𝑌

1 + 𝑒𝑌

where Y

𝑌 = 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 … + 𝛽𝑛𝑋𝑛 + 𝜖

The above equation can be modeled in Matlab using function. The mnrfit

code in the section in Figure 28 demonstrates the use of the function. The

dependent variable is a binary variable and the independent Duality

variables are the same as the previous example. Note that since this function

requires the dependent variable to contain positive integer category numbers

we add one to the binary variable. Moreover, it important to notice, that this

function models the probability that the dependent variable equals to its

minimum value. Therefore in this case the probability modeled is that

Duality variable equals zero. If you need to model the probability that

Duality equals one then the variable needs to be inversed.

Figure 28: Code Section for performing logistic regression

The function returns three variables: mnrfit

 The vector that contains the coefficient estimates for a multinomial B

logistic regression.

113

 The variable that is the deviance of the fit. It is twice the dev

difference between the maximum achievable log likelihood and that

attained under the fitted model.

 The structure that contains the fields as show in LogicStat

Table 18: Fields of the structure LogicStat

Field Description

beta The coefficient estimates. These are the same as . B

dfe Degrees of freedom for error

sfit Estimated dispersion parameter.

s Theoretical or estimated dispersion parameter.

estdisp Indicator for a theoretical or estimated dispersion parameter.

se Standard errors of coefficient estimates, . B

coeffcorr Estimated correlation matrix for . B

covb Estimated covariance matrix for . B

t t statistics for . B

p p-values for . B

resid Raw residuals. Observed minus fitted values,

residp Pearson residuals

residd Deviance residuals

114

9 Case Studies

In the following sub-section, some very useful examples with functions and

scripts are illustrated. Read, implement and execute the codes that are

given. Try to change the code. Experiment by adding your own command

lines. You can find all needed function, scripts and datasets in the folder

named as:

“Matlab Examples”

on my personal website. Depending on the place you are, this folder may be

in different locations.

9.1 The Black - Scholes- Merton Options Pricing

Formula

The Black Scholes Merton (BSM) model expresses the value of an option as a

function of the current value of a stock, S, the option’s strike price, X, the

option’s time to maturity, T, the volatility, s, of the stock price returns (this

is the standard deviation of the log-relative returns of the stock for the past

n days, where n is usually set equal to 60), the risk free rate, r, that prevails

for a maturity T and the stock’s dividend yield, d The analytic formula for

the a European call option derived by BSM is:

where,

and,

115

represents the cumulative normal distribution function with mean zero and

unity standard deviation (the Matlab build in function is named as:

). normcdf

The value of a European put option can also be defined via the BSM as:

9.1.1 Implementation of the BSM Formula

We want to create a script named as OptionsBSM.m that calls the user

created function to price European call, c, and European put, p, BSMprice

options using the Black, Scholes and Merton model (BSM). The function

should take seven (at least six) input parameters (as single values BSMprice

or in the form of a vector) and should return the value (or the vector) of a

European call or put. Its calling syntax should look like:

“[Price] = (S, X, T, vol, r, Index, dv)” BSMprice

“Index” is a string input argument that is set as an additional input

argument that takes the values: 'CALL' (or any other spelling of the 'CALL'

such as 'Call', 'CaLL', etc), or 'PUT' (or any other spelling of the 'PUT' such as

'Put', 'PuT', etc) and should be used to define the kind of option type (use the

build in function lower to convert the “Index” to lower case). Note the “Index”

precedes “dv” because “dv” should be an optional input (will come back to

this in a while).

To validate the , via the script create a table that tabulates the call formula

and put values against the moneyness ratio, S, and maturity, T. The data

should be loaded from a text file (that the user creates either by hand or via

a function) named as “options_data.txt” in which the columns should contain

S, X, T, s, r, d. The data values are given below:

S = {80,85,90,95,100,105,110,115,120} ,

T = {0.1,0.15,0.20,0.25}

s = {0.1,0.2,0.3}

116

and,

X = 100, r = 0.05, d = 0.02

After creating the text file, you should have a 108-by-6 table since for each

value of T and s you have nine different possible values for S.

Note that the function:

 Should check if the correct number of input arguments is supplied

and display an error massage otherwise (to do so, use the build-in

function ; see the help facilities for understanding its use). nargin

 Set dividends equal to zero automatically if no dividend input is

supplied or if the dividend input argument is set to be an empty array

(use the build in function exist).

 In order to prevent an error, the function should check whether the

input parameters are all positive or non-negative (elaborate on the

BSM formula to see which inputs should be >=0 and which only >0; d

and especially r with negative values can exist but do not have any

economical implication).

 If “Index” takes a different value other than those explained before, an

error message should be returned and the program execution should

break. Additionally, an error should be returned and program

execution should stop if “Index” is a string matrix and not a string

vector (“Index” should be either 1-by-4 string vector in the case of a

'CALL' or a 1-by-3 in the case of a 'PUT').

9.1.2 BSM Derivatives

From the same script as above, call a function with the name:

that returns the partial derivatives of the BSM formula BSMderivatives

(known as the Greek letters) for both the call and the put value. The partial

derivatives are:

117

where,

represents the normal probability density function with mean zero and unity

standard deviation (the build in function is named as). The normpdf

BSMderivatives calling syntax should be:

“[Derivatives] = (S, X, T, vol, r, Index, dv)” BSMderivatives

The function should make similar checks as before. The output of the

function should be a row vector if the input arguments are BSMderivatives

single values or a two dimensional array if the input arguments are vectors

with the following format:

“Derivatives = [Delta, Theta, Gamma, Vega, Rho]”

9.1.3 BSM Plots and Surfaces

Make the following plots:

 Two subplot figures, one for call options with T=0.15 and s=0.20, and

one for put options with T=0.25 and s=0.20 that plot S against all

partial derivatives. Give titles and axis names.

 A 3D surface of the cBSM and pBSM versus the S/X and T (note that in

order to create a smooth surface you should create a dense mesh-

grid) for the ranges:

80 ≤ S ≤ 120, 0.10 ≤ T ≤ 0.25

118

for:

X = 100, s = 0.20, r = 0.05, d = 0.02

9.1.4 BSM Implied Volatility

The only unobservable parameter related with the BSM formula when we

deal with real world problems is the volatility measure, s (although as said

before it can be estimated via log-relative reruns of the underlying asset). It

is accustomed by options traders to observe a market value for a call or put

option and given the observed values of S, X, ?, r, and d, they derive the

value of s that equates the BSM estimate with the market quote. Such s

value is known as implied volatility. For instance, if cmrk is the market price

of a call option and S’, X’, T’, r’ and d’ are the observable parameters related

with the call option, then the BSM implied volatility, simp, is that value of s

that minimizes the absolute error between cmrk and cBSM. Analytically this

problem is:

Alternatively, think this as solving the following equation:

for simp. It is known that such equation has no analytic solution, so to solve

it someone has to implement a numerical root-finding algorithm. The most

well-known root finding algorithm for the implied volatility problem is the

Newton-Raphson method.

The Newton method is very simple and quite fast method. It can be summarized

in three steps:

 Step #1: give an initial guess for simp (e.g. 𝒔𝒊𝒎𝒑
𝟎 = 𝟎)

 Step #2: perform an algorithm iteration, k, based on the following

formula:

119

for k=1,2,3,....

 Step #3: If |𝒈(𝒆)| < 𝒆 then stop and return 𝒔𝒊𝒎𝒑
𝒌 otherwise go to Step #2

and perform one more iteration, k, of the algorithm (the e is the desire

accuracy, usually set to a very small quantity)

Write a function with the following calling syntax:

“[ImpliedVol] = (Qmrk, S, X, T, r, Index, dv, maxNumIter, tol)” BSMimpliedVol

where “Qmrk” is the market quote of a call or put option. “maxNumIter”

represents the number of iterations and “tol” the desire accuracy (it is a

stopping criterion related with the absolute difference of market option value

and BSM estimate). “Index” is a single string with values “CALL” and “PUT” (or

any other combination that delivers the required word meaning) that is used to

distinguish between calls and puts as before. Note that all input arguments

precede the optional ones (the optional are “dv”, “maxNumIter” and “tol”).

Use as inputs the initial data from the loaded txt file (without considering s). The

function should make similar checking like previous functions with the

additional that:

 If not specified, “maxNumIter” should be equal to 100.

 If not specified, “tol”should be 1e-5.

 At the beginning of the function, it should be tested whether with a

small value of s (e.g. s=0.001) the cBSMand pBSMare greater than cmrk

and pmrk respectively; if such condition holds (it can be observed in

practice as an arbitrage result), an implied volatility value that

minimizes |𝐠(𝐞)| does not exist, so the function should return a “NaN”

value.

 To help the algorithm convergence rate and to save computing time, the

120

starting values for the algorithm should be given from the following

approximation suggested by Bharadia, Christofides and Salkin [3]:

with,

To use the implied volatility function, replace the volatility column of the options

data that were previously loaded from the text file with random values taken

from a uniform distribution on the interval [0,1] (use the build in function:

rand). Afterwards, use the to find the theoretical values for calls and BSMprice

puts. In the following, use the to verify that the implied volatility BSMimpliedVol

is quite close with the ones that you have initially used (these are the random

values) to price calls and puts with the BSM. Note that the implied volatility of

calls and puts for should match for similar input arguments. Plot the difference

to visualize that always the dollar difference is less than “tol” (given that the

algorithm iterations were adequate to secure convergence).

9.2 Function Minimization and Plots

There is a variety of optimization algorithms that can be used to minimize (or to

maximize) a univariate or a multivariate function (note that the maximization of

a function, f(x), is the same as the minimization of -f(x)). Two well known and

widely used algorithms are the gradient descent, that minimizes a function by

relying solely on a function’s first partial derivatives (gradient vector), and the

Newton’s descent algorithm that utilizes a function’s second order partial

derivatives (Hessian matrix).

The gradient descent algorithm can be summarized as follows:

 Step #1: give an initial guess for the coordinates of the minimum point

x0 (e.g. if the function under consideration has two unknowns x1 and

x2, then x should be a two element row vector: 𝒙𝟎 = [𝒙𝟏
𝟎, 𝒙𝟐

𝟎]

121

 Step #2: perform an algorithm iteration, k, based on the following

formula:

for k=l,2,3,....

where f (x k) is the value of the function at kth iteration at point x and

f ' (x k) is a row vector that includes the first order partial derivatives of

f(.) w.r.t x’s at the kth iteration. The parameter a is a positive scale

function that lies between 0 and l and is a learning rate that sets the

step size. Large values of a force the algorithm to oscillate around the

minimum point or even diverge, whereas small values of a lead to

more stable convergence but with extremely slow rate. Typical values

of a range between 0.01 and 0.15 depending on the faced problem.

Specifically, f ’ (x) for a function with n variables is:

 Step #3: Increase: k ← k+1 and if the current iteration index k is

larger than the maximum number of iterations or if ‖𝒂𝒇′(𝒙𝒌)‖ < 𝒆 then

stop and return 𝒙𝒌+𝟏 , otherwise go to Step #2 and perform one more

iteration of the algorithm (the e is the desire accuracy, usually set to a

small quantity such as 1e-6, whereas the maximum number of

iterations depends solely by the experience of the researcher).

The Newton Descent algorithm can be summarized as follows:

 Step #1: give an initial guess for the coordinates of the minimum point

x0 (e.g. if the function under consideration has two unknowns x1 and

x2, then x should be a two element row vector: 𝒙𝟎 = [𝒙𝟏
𝟎, 𝒙𝟐

𝟎])

 Step #2: perform an algorithm iteration, k, based on the following

formula:

for k=1,2,3,....

122

where f (x k) is the value of the function at kth iteration at point x,

f ' (x k) is a row vector that includes the first order partial derivatives of

f(.) w.r.t x’s at the kh iteration and [𝒇′′(𝒙𝒌)]
−𝟏

 is a square matrix that

represents the inverse of the second order partial derivatives of f(.)

w.r.t x’s (Hessian matrix) at the kth iteration.

Specifically, f "(x) for a Function with n variables is:

 Step #3: Increase k ← k+1 and if the current iteration index k is

larger than the maximum number of iterations or if ‖𝒇′(𝒙𝒌)[𝒇′′(𝒙𝒌)]−𝟏‖ <

𝒆

Then stop and return 𝒙𝒌+𝟏 , otherwise go to Step#2 and perform

one more iteration of the algorithm (the e is the desire accuracy,

usually set to a small quantity such as 1e-6, whereas the maximum

number of iterations depends solely by the experience of the

researcher).

Both the gradient descent and the Newton descent algorithms have inherent

problems with their implementation. For example, the user should “magically”

define the correct value of the learning parameter a in order to succeed a robust

convergence of the algorithm when it comes to implement the gradient descent

algorithm, or concerning the Newton descent one, when the Hessian matrix is

singular and its inverse does not exist then it is not applicable. Moreover, there

is no way to secure that the initial point to set up the algorithm will eventually

help in reaching the minimum point. Most of the times and when the user does

not have a detail overview of the faced problem, the initial value of x might be too

far from the minimum point, preventing in this way the algorithm to converge.

There are many suggestions to suppress these problems (i.e [4], [5]). In here, we

123

will implement these two algorithms just for getting the feeling on the way that a

minimization algorithm can be used. The user can later improve the function that

will be illustrated according to his/her needs.

To implement the previous algorithms, the user should be in a position to

find the gradient vector and the Hessian matrix. Although it is better to work

with the exact first and second order partial derivatives of the function via

their functional form, a more flexible, practical and quite accurate way is to

create two function in Matlab that calculate these with two sided finite

differencing methods. That is, instead of evaluating a function at a point x by

using the functional form of the gradient vector and the Hessian matrix, it is

easier to find these information via numerical differentiation (two sided finite

differencing).

The centred and evenly spaced finite difference approximation of the first

order partial derivatives (gradient vector) of a function f at point x is (for

simplicity assume a two variable function with x1 and x2 to be the unknown

variable - the extension to the n dimensional case is trivial):

where h is given from a rule of thumb (see [4] page 103),

with ∈ to represent machine precision (this is the build-in function eps).

The centred and evenly spaced finite difference approximation of the second

order partial derivatives (Hessian matrix) of a function f at point x is (for

simplicity assume a two variable function with xi and x2 to be the unknown

variable - the extension to the n dimensional case is trivial):

124

where h is given from a rule of thumb (see [4] page 103),

Having in mind the above, write a script with the name: FunctionMin.m that will

do the following:

 Make the 3D - surface and the contour plots of the function:

in the area - 2 ≤ x ,y ≤ 1.5 . The function should be saved in an m-file

with the name: funToMin. Given that you have created the m-fle with

the functional form of the function, to evaluate it at a point use the

build in function: feval. The calling syntax is:

“ (@funToMin,x)” feval

where x is a two element row vector (or m-by-2 array) with “x(1)” and

“x(2)” to represent x1 and x2 respectively.

 Do a new figure that creates the contour plot of this function, with the

value of the contours to range between 0 and 80 (for example use:

“V=[0:0.25:2, 3:1:10, 20:10:80]”).

 Call a function with the name: that implements the GradDescent

gradient descent algorithm for minimizing the aforementioned function.

The calling syntax of this function should be:

“[MinPoints, xVals] = (fun, x, lr, maxIterNum, tol)” GradDescent

fun is the function name “@funToMin”, x is a row vector with the

user’s guess (starting value) about the minimum of the function. The

input argument “lr” is the learning parameter a that should be set to

0.1 if not specified by the user. “maxlterNum” is as before the

maximum number of iterations that should be set to 100 if not

125

specified and “tol” is the tolerance concerning the norm of the

updating component of the point x (stopping criterion) and should be

set to 1e-6 is not specified. The function returns “MinPoints” that if

the algorithm has converged is the point where the function is

minimized, and “xVals” that is an m-by-2 array with the set of the

values of x at each iteration of the algorithm (mis either equal to:

maxIterNum” or a smaller number if the algorithm converges).

This function should call another function with the name: NumerDers

and with the following calling syntax:

“GradsVals = (fun,x)” NumerDers

that takes as input a function and a single coordinate point and

returns the gradient vector at that point. Use the two sided finite

difference method explained before. For the above, use as initial

point: x0=[0 0].

After you have called the function, plot on the contour figure the

algorithm’s trajectory to the minimum found in “xVals”. Call once

more the function with x0=[-1 -2] and add the new trajectory to the

contour figure. Use “lr”=0.25 and “maxIterNum” =200. Use gtext to

enter a text that indicates the trajectory.

 Call a function with the name: that implements the Newton Newton

descent algorithm for minimizing the aforementioned function. The

calling syntax of this function should be:

“[MinPoints,xVals] = (fun, x, maxIterNum, tol)” Newton

“fun” is the function name “@funToMin”, x is a row vector with the

user’s guess (starting value) about the minimum of the function.

“maxIterNum” is as before the maximum number of iterations that

should be set to 25 if not specified and tol is the tolerance concerning

the norm of the updating component of the point x (stopping

criterion) and should be set to 1e-6 is not specified. The function

126

returns “MinPoints” that given that the algorithm has converged, it is

the point where the minimum is located, and “xVals” that is an m-by-

2 array with the set of the values of x at each iteration of the

algorithm (m is either equal to “maxIterNum” or a smaller number if

the algorithm converges earlier).

This function should call another function with the name:

 and with the following calling syntax: NumerHessian

“HessVals = (fun,x)” NumerHessian

that takes as input a function and a single coordinate point and

returns the Hessian at that point. Use the finite two sided difference

method explained before. To avoid the calculation of a singular

Hessian that cannot be inverted, after saving the Hessian to a square

matrix, set equal to zero all its off diagonal elements. This is a very

useful rule of thumb that helps the algorithm convergence and

robustness. Use x0=[0 0] as initial estimate for the minimum.

After you have called the function, create a new contour figure of the

function and plot on it the algorithm’s trajectory to the minimum

found in “xVals”. Call once more the function with x0=[-1 -2] and add

the new trajectory to the contour figure. Use to enter a text that gtext

indicates the trajectory.

9.3 Portfolio Optimization

Many times, a researcher needs to create a portfolio of securities that for a

desire level of return/profit, it bears the least/minimum risk. The portfolio

optimization problem has been defined since Markowitz (1952) who assumed

that the risk associated with a portfolio can be measured with variance.

The researcher objective is to define via an optimization programming

methodology the weights that each of the alternative assets should have in the

portfolio. By construction, the portfolio return is linear w.r.t to the weights of the

assets and it is given from the following relation:

127

where rp is the weighted average return of the portfolio and E(.) is the

expectation operation. The weight representation of each asset in the portfolio

is given by W and the expected return of each asset is given by e as follows:

where n is the number of available assets. Contrary, the volatility of the

portfolio w.r.t the weights is a high nonlinear function given by the following

relation:

where sp represents the weighted average volatility (standard deviation) of

the portfolio, and O is the assets’ variance-covariance matrix:

with s i j = cov(ri, rj). Additionally, for the portfolio optimization problem, it is

required that the sum of the assets weights should be added to one:

with N1to be a column vector with unity elements.

From the above it is obvious that the portfolio optimization problem can be

solved via the minimization of a quadratic volatility function subjected to

linear constrains, one related with the portfolio expected return and another

that assures that all available funds are invested. There are several

convenient mathematical methods for solving this problem. In here, in first

place, it is illustrated the one that is called the method of the Langrangean

multiplier that allows the solution of the general portfolio problem with short

sales with the requirement that the constraints must be in equality form.

128

Lets consider the case of three risky assets without a risk-free rate (it is

trivial to generalize it to n risky assets). The inclusion of the risk free rate is

easy; by treating the risk-free rate as a “risky asset” with zero volatility and

zero covariance with all the other assets. The problem formulation that

achieves an expected return equal to R follows:

s.t

and for the case of the three assets in an analytic form:

s.t.

Note: If we do not use the first constraint and in the absence of a risk-free

rate we will get the minimum variance portfolio. It is actually advisable to

first get the minimum variance portfolio before we proceed in a real problem.

Then, by changing the level of desire return, we trace points on the efficient

frontier.

To solve this problem, we make two simplifications to the problem. First we

replace everywhere wC with 1- wA – wB . Second, we rearrange the

constraint:

to

and since it equals zero, we multiply it with a constant ? and we get:

Since this equals zero, we add it to the objective function that we want to

minimize without affecting the results. Finally, we minimize the quadratic

function without any constraints. Thus, we have to minimize a function (so

129

it can also be solved with methods that we have seen before). So, after

substitution we have:

We need to solve this problem to find the weights of the three assets in the

portfolio. We thus first find the solution to wA, wB and ?. The way to solve

the above problem is now easy. We take the partial derivatives each time in

respect to one of the three unknowns and set them equal to zero, and we will

derive a set of three equations with three unknowns. The first is the partial

derivative of / w.r.t wA, the second w.r.t wB and the third w.r.t the

Langrangean multiplier ?.

The first equation gives:

The second equation gives:

The third equation gives:

To work with this case study, assume the following data:

130

Write a script with the name: MeanVarMin.m that will do the following:

 Saves in a column vector the weights for the solution of the above

mean-variance minimization problem given by:

and

Find its expected return and its standard deviation.

 Create an m-file with the analytic expression of the function /with the

name: with the following syntax: portFun

“f= (x,r,V,R)” portFun

with x to represent a three element vector, x = [wA ,wB , ?] , r to be

the vector of the assets expected return, V the variance covariance

matrix and R the desire portfolio expected return.

 Assuming the inexistence of a risk-free rate, create a plot with the

minimum variance opportunity set (current efficient frontier) for

values of R that range between 1% and 40%. The figure should plot

the standard deviation against the portfolio expected return. To do so,

change slightly the function so that its calling syntax becomes: Newton

“[MinPoints] = (fun, x, r, V, R)” NewtonPort

with r to be the column vector of the assets’ expected returns, V the

assets’ variance-covariance matrix and R the desire expected return.

Similar changes in order to pass the additional arguments should be

done also to NumerDers.m (the new should be named as:

) and NumerHessian.m (the new should be named as: NumerDersPort

). Because the portfolio optimization problem is NumerHessianPort

actually the minimization of a quadratic function, the Newton descent

algorithm can find its solution with a single iteration. So, alleviate

also the rule of thumb according to which the elements of the

131

Hessian matrix except the ones of the main diagonal are set to zero.

Use the origin (0, 0, 0) as an initial point.

 Add a risk free asset with expected return 1%, find and plot the efficient

frontier. Create a new m-file with the name: portFunRiskFree.m that

includes the new expression of f after the inclusion of risk-free rate

(hint: find which components are zerovalued and ignore them). Create

a third figure that combines the two previous ones. If you are familiar

with investment theory, you can view various interesting components

(e.g. two fund separation theorem, capital market line, etc).

132

References

[1] Ela Pekalska, Marjolein van der Glas, (2001), “Introduction to MATLAB”,

Pattern Recognition Group, Faculty of Applied Sciences, Delft University

Technology.

[2] MATLAB® Release 2014a Online Help.

[3] Bharadia M. A. J., Christofides N, and Salkin G. R., (1995), “Computing

the Black and Scholes Implied Volatility”, Advances in Futures and Options

Research, Vol. 8, pp. 15-29.

[4] Miranda M. and Fackler P., (2002), Applied Computational Economics

and Finance, Massachusetts Institute of Technology.

[5] Bertsekas D., (1999), Nonlinear Programming, 2nd Edition, Athena

Scientific.

[6] Griffiths D., (2001), “An Introduction to Matlab: Version 2.2”, Department

of Mathematics, The University Dundee DD1 4HN.

[7] Silvestrov D., and Malyarenko A., (2001), “An Introduction to Financial

Mathematics With MATLABT, Malardalen University.

[8] Chandler G., (2000), “Introduction to Matlab”, Mathematics Department,

The University of Queensland.

[9] Ferrari S., (2000), “Tutorials in Robotics and Intelligent Systems: Part IV.

Introduction to MATLAB Optimization Toolbox”, Department of Mechanical

and Aerospace Engineering, Princeton University.

