

 An Introductory Course in MATLAB
with Financial Case Studies

Panayiotis C. Andreou, PhD

Cyprus University of Technology

Prepared by: Panayiotis Andreou, for PBA - UCY

1

What is Matlab?What is Matlab?

Matrix Laboratories which is a registered trademark of the
MathWorks, Inc.

The first version of Matlab was written in 1970s by a
numerical analyst named Cleve Moler.

Basic Feature:

… is a high performance programming language and a
computing environment that uses vectors and matrices as
one of its basic data types and is a powerful tool for
mathematical and technical calculations and for creating
various types of plots.

Prepared by: Panayiotis Andreou, for PBA - UCY

2

What is Matlab?What is Matlab?

It performs the basic functions of a programmable calculator
whereas someone can write, run/execute and save a bundle
of commands sentence by sentence.

it integrates computation, visualization and programming in
an easy to use environment via a subtle mathematical
notation.

Matlab has a broad spectrum of uses since it is keeping
expanded by MathWorks, Inc. as well as by user defined
programming codes. For example, the primary versions of
Matlab were made for solving linear algebra type problems
using matrices. Today, Matlab can be used in more fields.

Most Important: You Learn By Doing!!!

Prepared by: Panayiotis Andreou, for PBA - UCY

3

Two Important FeaturesTwo Important Features

Data Elements:

Its basic data element is an array that does not require
dimensioning. That is, there is only one type of variable that is
treated as a rectangular array. It can be either a scalar, either a
row or column vector or a matrix.

Extensible and Powerful Language:

Matlab features a family of add-on application-specific solutions
called toolboxes. A toolbox is a comprehensive collection of
Matlab functions (m-files) that extend the Matlab environment to
solve particular classes of problems. Additionally, the user is free
to create its own classes of functions to deal with specialized
problems.

Prepared by: Panayiotis Andreou, for PBA - UCY

4

Starting Up MatlabStarting Up Matlab

Step 1: Use the [Ctrl]+[Alt]+[Del] combination to bring up the logon
screen (at this point you should enter the user name and your
password and after to press [Enter])

Step 2: After few seconds, you can view the PC’s Desktop screen with
all available icons. Find the Matlab’s shortcut icon (labeled as “Matlab”
and looks like:) and double click on it. After few moments, the
Matlab starts up and the following words appear in one of the
screens:

Step 3: The Matlab is now ready to be used! (if you want to quit
Matlab, from the window named as Command Window either type
quit or exit from the toolbar choose: File > Exit Matlab)

To get started, select "MATLAB Help" from the Help menu

Prepared by: Panayiotis Andreou, for PBA - UCY

5

Matlab’s Window: DesktopMatlab’s Window: Desktop

Prepared by: Panayiotis Andreou, for PBA - UCY

6

Matlab’s Window: Command WindowMatlab’s Window: Command Window

It is the main window in which
the user communicates with the
software. In the command
window, the user can view the
prompt symbol “>>” which
indicates that Matlab is ready to
accept various commands by
the user.

Via this window, the user can employ the basic arithmetic operators like:
“+” (addition), “-” (subtraction), “*” (multiplication), “/” (division), “^”
(powers) and the “()” (brackets), as well as many other build in
elementary functions and commands

Prepared by: Panayiotis Andreou, for PBA - UCY

7

Matlab’s Window: WorkspaceMatlab’s Window: Workspace

The Matlab workspace
consists of the set of
variables (named
arrays) built up during a
Matlab session and
stored in memory.

You add variables to the workspace by using functions, running
m-files, and loading saved workspaces. The workspace is not
maintained after you end the Matlab session. To save the
workspace to a file that can be read during a later Matlab
session, select Save Workspace As from the File menu.

Prepared by: Panayiotis Andreou, for PBA - UCY

8

Matlab’s Window: Command HistoryMatlab’s Window: Command History

Select one or more lines and
right-click to copy and re-
use the command with the
command window, to
evaluate it or to create an
m-file.

Statements that enter in
the Command Window
are logged in the
Command History. In the
Command History, you
can view previously run
statements, and copy and
execute selected
statements.

Prepared by: Panayiotis Andreou, for PBA - UCY

9

Matlab’s Window: Current DirectoryMatlab’s Window: Current Directory

Matlab file operations use the current directory and the search
path (File> Set Path…) as reference points. Any file you want to
run must either be in the current directory or on the search
path. A quick way to view or change the current directory is by
using the Current Directory field in the desktop toolbar. To
search for, view, open, and make changes to Matlab - related
directories and files, use the Matlab Current Directory Browser
which is called after clicking the icon: .

Prepared by: Panayiotis Andreou, for PBA - UCY

10

Matlab Variable NamesMatlab Variable Names

Variable names are case sensitive:
Accepted variables names do not start with symbols (e,g:
~, _) or numbers, use lower and upper case letters, do
not exceed 63 characters and do not resemble reserved
works and build-in functions.

Matlab recognizes only one type of variable:
scalar: 1-by-1 array
vector: 1-by-c (row vector with c columns)

1-by-r (column vector with r rows)
array: an r-by-c array (a matrix with r rows and c

columns)

Prepared by: Panayiotis Andreou, for PBA - UCY

11

Matlab Data TypesMatlab Data Types

The data type is a classification of particular type
information:

integer a whole number, a number without any fraction
(e.g. 12);

floating point a number with a fractional part (e.g. 25.7)

character readable text character (e.g. 'Matlab').

With Matlab, it is not needed to type or declare variables. Any
operation that assigns a value to a variable creates the
variable, if needed, or overwrites its current value, if it already
exists.

Prepared by: Panayiotis Andreou, for PBA - UCY

Command Window: Matlab as CalculatorCommand Window: Matlab as Calculator
12

Matlab’s Command Window is an active calculator in which
mathematical statements are executed. At minimum, Matlab
is a scientific calculator that can perform all operations that
are carried out from pocket scientific calculators.

User is allowed to assign a name to an expression. After
assigning the name, this expression becomes a variable
(scalar, vector or matrix) with a certain data type.

All expressions entered, are saved in the Matlab’s workspace
and can be recalled in a later stage with their variable name.

If no variable name is given to an expression, Matlab
automatically assigns the name: ansans

Prepared by: Panayiotis Andreou, for PBA - UCY

13

Math and Assignment OperatorsMath and Assignment Operators

Basic Math Operators:
Addition and unary addition: ++

Subtraction and unary subtraction: --

Power: ^̂

Division: //

Left division: \\

Assignment Operator:
Assignment: ==

Special Character:
Bracket: ()()

Prepared by: Panayiotis Andreou, for PBA - UCY

14

ExamplesExamples

In the command window enter the following:

ResultResultInput CommandInput Command

ans=0.5000>>10\5

ans=2>>10/5

ans=2>>(((2*(2+1)^2)/3)/9)*3

ans=9.8511>>52/47*8+1

ans=11>>(5*2+1)

ans=6>>8-2

ans=2>>1+1

Prepared by: Panayiotis Andreou, for PBA - UCY

15

Help FacilitiesHelp Facilities

Matlab has additional operators except those exhibited
previously. How can you find them?

Matlab is a technical software that is enhanced with extensive
online help, via various help facilities that follow:

If the user knows the topic in
which an informative help tip is
needed it can use the help command.

The problem with the help
command is that the user must be
familiar with the topic under
consideration and the word following
the help command must be exact and
spell correctly.

If the user knows the topic in
which an informative help tip is
needed it can use the helphelp command.

The problem with the helphelp
command is that the user must be
familiar with the topic under
consideration and the word following
the helphelp command must be exact and
spell correctly.

1. help command

2. lookfor command

3. Help Browser

1.1. helphelp command

2.2. lookforlookfor command

3. Help Browser

Prepared by: Panayiotis Andreou, for PBA - UCY

16

Help FacilitiesHelp Facilities

Matlab has additional operators except those exhibited
previously. How can you find them?

Matlab is a technical software that is enhanced with extensive
online help, via various help facilities that follow:

1. help command

2. lookfor command

3. Help Browser

1.1. helphelp command

2.2. lookforlookfor command

3. Help Browser

Example:
In the command window type:

>> help operators
>> help ops

Prepared by: Panayiotis Andreou, for PBA - UCY

17

Help FacilitiesHelp Facilities

Matlab has additional operators except those exhibited
previously. How can you find them?

Matlab is a technical software that is enhanced with extensive
online help, via various help facilities that follow:

More flexible for pursuing help
from Matlab when the user is not
familiar with the exact key word. It
looks for the given string in the first
comment line of the help text in all
m-files located in Matlab’s toolboxes.

It is time consuming and
sometimes takes up to some minutes
to come up with a result.

More flexible for pursuing help
from Matlab when the user is not
familiar with the exact key word. It
looks for the given string in the first
comment line of the help text in all
m-files located in Matlab’s toolboxes.

It is time consuming and
sometimes takes up to some minutes
to come up with a result.

1. help command

2. lookfor command

3. Help Browser

1.1. helphelp command

2.2. lookforlookfor command

3. Help Browser

Prepared by: Panayiotis Andreou, for PBA - UCY

18

Help FacilitiesHelp Facilities

Matlab has additional operators except those exhibited
previously. How can you find them?

Matlab is a technical software that is enhanced with extensive
online help, via various help facilities that follow:

1. help command

2. lookfor command

3. Help Browser

1.1. helphelp command

2.2. lookforlookfor command

3. Help Browser

Example:
In the command window type:

>> lookfor operators
>> lookfor ops

Prepared by: Panayiotis Andreou, for PBA - UCY

19

Help FacilitiesHelp Facilities

Matlab has additional operators except those exhibited
previously. How can you find them?

Matlab is a technical software that is enhanced with extensive
online help, via various help facilities that follow:

Online help can also be obtained
via the Help menu found in the
Matlab’s desktop. From the toolbar,
select Help>Matlab Help to get the
help browser with a list of help
topics. Through this screen, the user
can navigate around a variety of
topics by double clicking on them
(this browser displays html help
pages and can be operate like the
Internet Explorer).

Online help can also be obtained
via the Help menu found in the
Matlab’s desktop. From the toolbar,
select Help>Matlab Help to get the
help browser with a list of help
topics. Through this screen, the user
can navigate around a variety of
topics by double clicking on them
(this browser displays html help
pages and can be operate like the
Internet Explorer).

1. help command

2. lookfor command

3. Help Browser

1.1. helphelp command

2.2. lookforlookfor command

3. Help Browser

Prepared by: Panayiotis Andreou, for PBA - UCY

20

Help BrowserHelp Browser

Available Toolboxes HelpAvailable Toolboxes Help

Prepared by: Panayiotis Andreou, for PBA - UCY

21

Examples with Elementary FunctionsExamples with Elementary Functions

In the command window type: “help help elfun” and carry out the
following examples:

Rounding and RemainderRR3= 2>> RR3=rem(8,3)

Rounding and RemainderRR2= 1>> RR2=round(1.252)

>> RR1= fix(2.587)

>> Exp3=sqrt(25)

>> Exp2=log(2)

>> Exp1=exp(1)

>>Tr3=tan(2.5)

>> Tr2=cos(5)

>> Tr1=sin(0.1)

Input CommandInput Command TypeTypeResultResult

Rounding and RemainderRR1=2

ExponentialExp3=5

ExponentialExp2=0.6931

ExponentialExp1=2.7183

TrigonometricTr3=-0.7470

TrigonometricTr2 = 0.2837

TrigonometricTr1 = 0.0998

Prepared by: Panayiotis Andreou, for PBA - UCY

22

Controlling Command Window and WorkspaceControlling Command Window and Workspace

The variables that you have assigned previously are saved in the
workspace. Type their name at the prompt “>>” to recall them.

Useful Commands:

whowho: : Lists current variables located in the workspace.

whoswhos: : Is a long form of whowho. It lists all the variables in the current workspace,
together with information about their size, bytes, class, etc.

clear allclear all: : Clear all variables and functions from memory.

homehome: : Moves the cursor to the upper left corner of the command window and
clears the visible portion of the window.

clcclc: : Clears the command window and homes the cursor.

quitquit: : Terminates Matlab.

whatwhat: : Lists all Matlab files (m-files) in current directory

dir, dir, cdcd, , cdcd: : Likewise DOS

Prepared by: Panayiotis Andreou, for PBA - UCY

23

The The formatformat CommandCommand

The formatformat function controls the numeric format of the values
displayed by Matlab. The function affects only how numbers are
displayed, not how Matlab computes or saves them.

In the command window, type first the formatformat command and then
recall a workspace variable (e.g. Exp1):

format short eformat short e: : Floating point format with 5 digits.

format short gformat short g: : Best of fixed or floating point format with 5
digits.

format long eformat long e: : Floating point format with 15 digits.

format long gformat long g: : Best of fixed or floating point format with 15
digits.

format bankformat bank: : Fixed format for dollars and cents.

Use the helphelp command to see more formats.

Prepared by: Panayiotis Andreou, for PBA - UCY

24

Matlab Special VariablesMatlab Special Variables

Specify range (e.g. starting_value:step:finishing_value) :

Insert a comment line. %

Suppress output and rows in matrices.;

Separates statements and vector elements. ,

Continue a long statement to the next line.…

Positive infinitive (e.g. 1/0).Inf

Not a Number (e.g. 0/0, Inf/Inf).NaN

Largest positive floating point number (= 1.7977e+308.reamax

Smallest positive floating point number (=2.2251e-308).realmin

Machine precision. Floating point relative accuracy.eps

The Matlab value for πpi

Prepared by: Panayiotis Andreou, for PBA - UCY

25

Command Line EditingCommand Line Editing

Various arrow and control keys on your keyboard allow you to recall,
edit, and reuse statements you have typed earlier. For example,
suppose you mistakenly enter:

>> G = (1 + sqt(5))*sin(pi)

You have misspelled square root function: sqrtsqrt. Matlab responds with:

“Undefined function or variable 'sqt'”

Instead of retyping the entire line, simply press the key. The
statement you typed is redisplayed. Use the key to move the cursor
over and insert the missing “r”. Repeated use of the key recalls earlier
lines. Typing a few characters and then the key finds a previous line
that begins with those characters. You can also copy previously
executed statements from the Command History window.

Prepared by: Panayiotis Andreou, for PBA - UCY

The BlackThe Black--ScholesScholes--Merton (BSM) FormulaMerton (BSM) Formula
26

Given a set of parameters, it gives the value of a European
call or put option.

)d(NXe)d(NSec rTTδBSM
21

−− −=

Tσ/)Τ)/σδr()X/S(ln(d 22
1 +−+= Tσdd −= 12

S: Current stock value (underlying asset)
X: Option’s exercise price
T: Time to maturity in years fraction
σ: Stock’s volatility/log-relative returns standard deviation (%)
r: Continuously compounded risk free rate with maturity T (%)
δ: Stock’s dividend yield (%)
N(.): cumulative normal distribution function N(0,1)

Prepared by: Panayiotis Andreou, for PBA - UCY

27

Practicing the BSM FormulaPracticing the BSM Formula
Notice that the Matlab build in function for square root is sqrtsqrt()(), for
natural logarithm is log()log(), for exponential is exp()exp(), and for the
standard normal cumulative distribution is normcdfnormcdf()().

In the command window write:

>> S=105, X=100, T=0.1, sig=0.25, r=0.05, div=0.02

>> d1=(loglog(S/X)+(r-div+sig^2/2)*T)/(sig*sqrtsqrt(T))

>> d2=d1-sig*sqrtsqrt(T); Nd1=normcdfnormcdf(d1); Nd2=normcdfnormcdf(d2);

>> Call=S*expexp(-div*T)*Nd1-X*expexp(-r*T)*Nd2

After you type all commands, the correct price for the call option is:
Call = 6.5321.

Observe that multiple statements can be entered in one line if they
are separated by “,” or “;” (what is their difference).

Prepared by: Panayiotis Andreou, for PBA - UCY

28

VectorsVectors

A vector is a list of numbers separated by either space or
commas. Each different number/entry located in the vector is
termed as either element or component. The number of the
vector elements/components determines the lengthlength of the
vector. In Matlab, square brackets “[]” are used to both
define a vector and a matrix.

Matlab can handle both row and column vectors. A row vector
is produced by the transpose of a column vector and vise
versa. Matlab returns the transpose of a vector when ' follows
the definition of a vector.

Build in functions of vectors are executed element-wise.

Prepared by: Panayiotis Andreou, for PBA - UCY

29

Examples with VectorsExamples with Vectors

xx = 2 xy= 1

5 8

8 -9

>> xx=X', xy=[1; 8; -9]

X= 2.0000 5.0000 8.0000>> expexp(loglog(X))

X= 2 5 8>> X=[2:3:10]

X= 2 5 8 11>> X=[2:3:11]

X= 1 2 3>> X=1:3

y= 10.0000 14.7781 -2.0000 6.2832>> y=2*y

L= 4>> L=lengthlength(y)

y= 5 7.3891 -1 3.1416>> y=[5 expexp(2) signsign(-5) pipi]

OutputOutputInput Input

Prepared by: Panayiotis Andreou, for PBA - UCY

30

Examples with VectorsExamples with Vectors

v1=1 3 4 6 7, v2=[]>> v1(2:3:end)=[], v2=[]

ans=-0.9640 -0.7616 0 0.7616>> tanh(log(sqrt(exp(v2))))

ans= -2 0 2>> v2(2:endend)

ans= 4>> v7=[v4']; lengthlength(v7)

v6=5 5 -1 -1>> v6(1:2)=5; v6(3:4)=-1

v5= 1 -2 0>> v5=[v1(1) v4(endend) v2(endend-1)]

v4= 3 5 7 -2>> v4=[v1(3:2:8) v2(2)]

v3= 2 3 4>> v3=v1(2:4)

v1= 1 2 3 4 5 6 7 8

v2= -4 -2 0 2

>> v1=1:8, v2=-4:2:2

OutputOutputInput Input

Prepared by: Panayiotis Andreou, for PBA - UCY

31

Vectors’ Mathematical OperationsVectors’ Mathematical Operations

When manipulating row and column vectors, pay attention to have
similar lengths.

ddiv2= 2 Inf -1 -1>> ddiv2=(u./w')'

ddiv1=0.5000 0 -1.0000 -1.0000>> ddiv1=w./u'

dprod2= 4 0 8 -1>> dprod2=u'.*u'.*w

dprod1= 2 0 -4 -1>> dprod1=w.*u'

prod3= 6>> prod3 = w*w'

prod2= 3.5000>> prod2 = (2+w)*(u/2)

prod1=-3>> prod1 = w * u

Nothing is displayed>> w=[1 0 2 -1]; u=[2; 4; -2; 1];

OutputOutputInput Input

Prepared by: Panayiotis Andreou, for PBA - UCY

32

Vectors’ Mathematical OperationsVectors’ Mathematical Operations

ans= NaN 1.0000 1.0000 1.0000>> ans./ans

ans= 0 1.0000 4.0000 9.0000>> ans.*ans

ans = 0 1.0000 2.0000 3.0000>> d.*d

ans= 0 1.0000 4.0000 9.0000>> d.^4

ans = 0 1.0000 2.0000 3.0000>> d.^2

ans= 0.4621 0.7616 1.0000 1.0000>> (expexp(x)-expexp(-x))./(expexp(x)+expexp(-x))

Nothing is displayed>> x=[0.5 1 20 50]; d=sqrtsqrt(0:3);

Displays, cleans workspace>> who, clear all

OutputOutputInput Input

When manipulating row and column vectors, pay attention to have
similar lengths.

Prepared by: Panayiotis Andreou, for PBA - UCY

33

The BSM RevisitedThe BSM Revisited

Let’s say that we want to price European call options for the
following values of S, X and T with all other data the same:

(90, 100, 0.1), (80,150, 0.15), (100, 80, 2), (10,10, 1)

In the command window write:

>> S=[90 80 100 10], X=[100 150 80 10], T=[0.1 0.15 2 1]

>> sig=0.25, r=0.05, div=0.02

>> d1=(loglog(S./X)+(r-div+(sig.^2)./2).*T)./(sig.*sqrtsqrt(T))

>> d2=d1-sig.*sqrtsqrt(T); Nd1=normcdfnormcdf(d1); Nd2=normcdfnormcdf(d2);

>> Call=S.*expexp(-div.*T).*Nd1-X.*expexp(-r.*T).*Nd2

After you type all commands, the correct price for the call option is:
Call = 0.3439 0.0000 27.1985 1.1124

Prepared by: Panayiotis Andreou, for PBA - UCY

34

Two Dimensional Arrays: MatricesTwo Dimensional Arrays: Matrices

A two dimensional array is a composition of row and column vectors,
created by using spaces (or commas) and semicolons.

A2= -1 0 1 2

1 2 3 4

-1 0 1 2

1 2 3 4

NaN Inf 1 -2

>> A2=[A1;A1;[NaN Inf 1 -2]]

A1= -1 0 1 2

1 2 3 4

>> A1=[B;C]

Nothing is displayed>> B=linspacelinspace(-1,2,4); C=1:4;

Cleans workspace and homes cursor>> clear all, clc

OutputOutputInput Input

Prepared by: Panayiotis Andreou, for PBA - UCY

35

Two Dimensional Arrays: MatricesTwo Dimensional Arrays: Matrices

A two dimensional array is a composition of row and column vectors,
created by using spaces (or commas) and semicolons.

A4 = 0 2 Inf

1 3 1

2 4 -2

>> A4=[A2(1:2,2:4); A2(5,2:4)]'

A3= -1 3 Inf>> A3=[A2(1,1) A2(2,3) A2(10)]

ans = -1 0 1 2>> A2(1,:)

ans = -1 1 -1 1 NaN>> A2(:,1)'

M= 5 N=4>> [M N]=sizesize(A2)

OutputOutputInput Input

Prepared by: Panayiotis Andreou, for PBA - UCY

36

Matrices Mathematical OperationsMatrices Mathematical Operations

Matrices mathematical operations follow the same rationale as with
vectors’.

ans= -19 >> G(1,:)*P

ans= 7.9056>> (G.*G./([P,P]+1)*P)'*(P-8.5)

ans= 4.5000 -9.5000

8.5000 67.0000

>> G.^3/2+[P,P]./2

ans = -10.0000 -10.5000>> ([P+2,P./2]*G(:,2))'

ans= 787>> P'*G*G*P

ans= -19 61>> (G*P)'

Displays, cleans workspace>> G=[1 -3; 2 5]; P=[8; 9];

OutputOutputInput Input

Prepared by: Panayiotis Andreou, for PBA - UCY

37

The BSM Revisited (Sensitivities)The BSM Revisited (Sensitivities)

Let say that we want to price European call options for the following
values of S, T and r with all other data the same:

100100100100

100100100100

115110105100

S

0.10.10.10.1

0.300.250.200.15

0.10.10.10.1

T

0.01

0.05

0.05

0.040.030.02

0.050.050.05 r

0.050.050.05

X = 100, σ= 0.25,

δ= 0.02

Prepared by: Panayiotis Andreou, for PBA - UCY

38

The BSM Revisited (Sensitivities)The BSM Revisited (Sensitivities)
In the command window write:

>> S=[100:5:115]; S(2:3,:)=100; X=100; sig=0.25; div=0.02;

>> T(1:3,1:4)=0.1; T(2,:)=0.15:0.05:0.30

>> r(1:2,1:4)=0.05; r=[r; 0.01 0.02 0.03 0.04]

>> d1=(loglog(S./X)+(r-div+sig.^2./2).*T)./(sig.*sqrtsqrt(T))

>> d2=d1-sig.*sqrtsqrt(T); Nd1=normcdfnormcdf(d1); Nd2=normcdfnormcdf(d2);

>> Call=S.*expexp(-div.*T).*Nd1-X.*expexp(-r.*T).*Nd2

After you type all commands, the correct price for the call option is:
Call = 3.2938 6.5321 10.7024 15.3878

4.0690 4.7312 5.3208 5.8585

3.0987 3.1468 3.1953 3.2444

Prepared by: Panayiotis Andreou, for PBA - UCY

39

2D Plots2D Plots

There are powerful build in functions for creating 2D plots. Matlab can
plot one vector Vs another. Always, the first vector is taken to be the
abscissa vector (x-axis) and the second the ordinate (y-axis). Always,
to create a 2D plot the length of the plotted vectors should be the
same.

There is the possibility to plot a vector Vs its index. That is, if only one
vector is called with the plot command, then Matlab plots each element
of the input vector in the ordinate (y-axis) Vs an index in the x-axis
(Index=[1, 2, …, lengthlength(input_vector)]).

Via a set of additional commands, a figure plot can be given a title, a
label to its axis, add text anywhere in the plot, etc.

Prepared by: Panayiotis Andreou, for PBA - UCY

40

2D Plots2D Plots

A 2D line (or mark) plot is created via the plotplot() build in function. It
general calling syntax is:

plotplot(X,Y, '#@$')

where: # represents a color Matlab symbol
@ represents a mark Matlab symbol
$ represents a line Matlab symbol

Pentagram, hexagram and solidp, h,

Triangles: up, left and right ^, <, >Blackk

Diamond and triangle down d, vYellowy

Plus, star and square+, *, sMagentam

Point, circle and x-mark., o, xCyanc

Mark Style (@)SymbolRedr

Solid, dotted, dash dot and dashed-, :, -., --Green g

Line Style ($)SymbolColor (#)Symbol

Prepared by: Panayiotis Andreou, for PBA - UCY

41

2D Examples2D Examples
Insert the following examples to the command window in order to
plot the function f(x) in the area [0,5] and experiment with
additional features related to plots:

)x/()xx()x(f 5152 32 −−+=

>> x=0:0.5:5; y=(2*x.^2+5*x-1)./(x.^3-5); plot(x,y);

>> x=0:0.25:5; y=(2*x.^2+5*x-1)./(x.^3-5); plot(x,y, 'rh-.');

>> xlabel('x-values'); ylabel('y-values'); title('y=(2x^2+5x-1)/(x^3-5)');

>> hold on; y1=rand(1,length(y)); plot(x,y1, 'g*-- ');

>> close all; plot(x,y, 'bp--',x,log(y1.^2), 'rh',x,x+zeros(1,length(x)), 'ms');

>> legend('y','log(y1^2)','x'); title('Various Plots');

>> figure; x=linspace(0,2*pi,25); subplot(3,1,1); plot(x, sin(x),'r*-.'); ylabel('sin(x)');

>> subplot(3,1,2); plot(x, cos(x),'gh-.'); ylabel('cos(x)');

>> subplot(3,1,3); plot(x, x.*sin(x), 'r*'); ylabel('x*sin(x)');

Prepared by: Panayiotis Andreou, for PBA - UCY

42

2D Examples2D Examples

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-8

-6

-4

-2

0

2

4

6

>> x=0:0.5:5; y=(2*x.^2+5*x-1)./(x.^3-5); plotplot(x,y);

Prepared by: Panayiotis Andreou, for PBA - UCY

43

2D Examples2D Examples

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-10

-5

0

5

10

15

20

25

30

35

40

>> x=0:0.25:5; y=(2*x.^2+5*x-1)./(x.^3-5); plotplot(x,y, 'rh-.');

Prepared by: Panayiotis Andreou, for PBA - UCY

44

2D Examples2D Examples

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-10

-5

0

5

10

15

20

25

30

35

40

x-va lues

y-
va
lu
es

y=(2x2+5x-1)/(x3-5)
>> xlabelxlabel('x-values'); ylabelylabel('y-values'); titletitle('y=(2x^2+5x-1)/(x^3-5)');

Prepared by: Panayiotis Andreou, for PBA - UCY

45

2D Examples2D Examples

>> hold onhold on; y1=randrand(1,lengthlength(y)); plotplot(x,y1, 'g*-- ');

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-10

-5

0

5

10

15

20

25

30

35

40

x-va lues

y-
va
lu
es

y=(2x2+5x-1)/(x3-5)

Prepared by: Panayiotis Andreou, for PBA - UCY

46

2D Examples2D Examples

>> close allclose all; plotplot(x, y, 'bp--', x, loglog(y1.^2), 'rh', x, x+zeroszeros(1,lengthlength(x)), 'ms');

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-10

-5

0

5

10

15

20

25

30

35

40

Prepared by: Panayiotis Andreou, for PBA - UCY

47

2D Examples2D Examples

>> legendlegend('y', 'log(y1^2)', 'x'); titletitle('Various Plots');

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-20

-10

0

10

20

30

40
Va rious Plots

y
log(y12)
x

Prepared by: Panayiotis Andreou, for PBA - UCY

48

2D Examples2D Examples

0 1 2 3 4 5 6 7
-1

-0.5

0

0.5

1

si
n
(x
)

0 1 2 3 4 5 6 7
-1

-0.5

0

0.5

1

co
s
(x
)

0 1 2 3 4 5 6 7
-6

-4

-2

0

2

x*
si
n
(x
)

>> figurefigure; x=linspacelinspace(0,2*pipi,25);
>> subplotsubplot(3,1,1); plotplot(x, sin(x),'r*-.'); ylabelylabel('sin(x)');
>> subplotsubplot(3,1,2); plotplot(x, cos(x),'gh-.'); ylabelylabel('cos(x)');
>> subplotsubplot(3,1,3); plotplot(x, x.*sin(x), 'r*'); ylabelylabel('x*sin(x)');

Prepared by: Panayiotis Andreou, for PBA - UCY

49

3D Line Plots3D Line Plots
>> g=linspace(-5*pi,5*pi,200); plot3(sin(g), cos(g), g, 'r*-');

>> xlabel('x'); ylabel('y'); zlabel('z'); title('A helix');

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1
-20

-15

-10

-5

0

5

10

15

20

x

A He lix

y

z

Prepared by: Panayiotis Andreou, for PBA - UCY

50

3D Surface Graphs3D Surface Graphs

If it is needed to evaluate a bivariate function, f(x,y), at each
(x,y) pair you should evaluate a value for f(.).

To plot the surface, it is needed to create a grid of sample points
(most preferable with high density) that cover the rectangular
domain of the (x, y) plane in order to generate X and Y matrices
consisting of repeated rows and columns, respectively, over the
domain of the function. Then these matrices will be used to
evaluate and graph the function.

The meshgridmeshgrid function transforms the domain specified by two
vectors, x and y, into matrices, X and Y. You then use these
matrices to evaluate functions of two variables. The rows of X
are copies of the vector x and the columns of Y are copies of the
vector y.

Prepared by: Panayiotis Andreou, for PBA - UCY

51

3D Surface Graphs3D Surface Graphs

Let’s plot the peaks function with functional form:

222222 15312

3
1

5
1013 y)x(yx)y(x ee)yxx(e)x()y,x(fZ −+−−−+−− −−−−−==

In the command window write:

>> clear allclear all; x=-2:0.25:2; y=-4:0.5:4; [X Y]=meshgridmeshgrid(x,y);

>> plotplot(X,Y, 'rh'); axisaxis([-3 3 -5 5]);

>> xlabelxlabel('x-axis'); ylabelylabel('y-axis'); titletitle('Meshgrid');

>> grid on;

View the plot in the next slide to understand the meshgridmeshgrid
functioning.

Prepared by: Panayiotis Andreou, for PBA - UCY

52

3D Surface Graphs 3D Surface Graphs -- meshgridmeshgrid

-3 -2 -1 0 1 2 3
-5

-4

-3

-2

-1

0

1

2

3

4

5

x-axis

y-
ax
is

Mes hgrid

Observe that meshgridmeshgrid has sampled all possible interior points of
the (x, y) plane.

Prepared by: Panayiotis Andreou, for PBA - UCY

53

3D Surface Graphs 3D Surface Graphs -- meshmesh

>> Z =3*(1-X).^2.*exp(-(X.^2) - (Y+1).^2)- 10*(X/5-X.^3- ...

Y.^5).*exp(-X.^2-Y.^2)-1/3*exp(-(X+1).^2-Y.^2);

>> mesh(X, Y, Z); xlabel('x'); ylabel('y'); zlabel('Z'); title('Peaks');

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

-4

-2

0

2

4
-8

-6

-4

-2

0

2

4

6

8

x

Peaks

y

Z

Prepared by: Panayiotis Andreou, for PBA - UCY

54

3D Surface Graphs 3D Surface Graphs -- surfsurf

>> figurefigure; meshmesh(X, Y, Z);); xlabelxlabel('x'); ylabelylabel('y'); zlabelzlabel('Z'); titletitle('Peaks');

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

-4

-2

0

2

4
-8

-6

-4

-2

0

2

4

6

8

x

Peaks

y

Z

Prepared by: Panayiotis Andreou, for PBA - UCY

55

Matlab Editor/DebuggerMatlab Editor/Debugger
Use the Editor/Debugger to create and debug m-files, which are programs
you write to run Matlab functions. To open the Editor/Debugger window go:
File>New>M-file

Prepared by: Panayiotis Andreou, for PBA - UCY

56

BSM with Editor/DebuggerBSM with Editor/Debugger

Open the Editor/Debugger either via the File>New>M-File from the
menu or by clicking the icon on Matlab’s desktop.

Write the set of commands needed to:

Price call options for the following parameter values:

S= 60:5:130, X= 100, T= 0.1, σ= 0.25, r= 0.05, δ= 0.02

Plot the call values Vs S

Make the 3D surface of call Vs S Vs T for the following ranges:

S=80:2:120, T= 0.1:0.02:0.3

The resulting file is a script and it is saved a an m-file with a name
(e.g. pres_BSM.m). To run the script either select: Debug>Save and
Run or save it in a directory, go to the command window and at “>>”
write its name without the .m extension (notice that the current
directory should be the one that you save the file).

Prepared by: Panayiotis Andreou, for PBA - UCY

57

What is a Script?What is a Script?

Scripts can operate on existing data in the workspace, or they can

create new data on which to operate. Although scripts do not return

output arguments, any variables that they create remain in the

workspace, to be used in subsequent computations. Scripts are useful

for automating a series of steps that are needed to be performed many

times.

A script has no a specific structure. It includes a number of commands

that are serially executed. As long as the command series has a logical

interpretation, the script will result to the desire output. Remember that

a script does not take and does not return input and output arguments

respectively. The vectors and matrices (variables or scalars) are stored

in the Matlab’s workspace.

Prepared by: Panayiotis Andreou, for PBA - UCY

• Script location and name
• * indicates that script is not saved

• Script location and name
• * indicates that script is not saved

• Indicates that is a script• Indicates that is a script

58

Prepared by: Panayiotis Andreou, for PBA - UCY

59

Relational and Logical OperatorsRelational and Logical Operators

To compare various “quantities” (e.g. A=B) or to define a logical
condition (X>2) Matlab offers the following alternatives (in
order of precedence):

Logical Operators:Logical Operators:Relational Operators:Relational Operators:

not: ~

and: &

or: |

Logical Functions:Logical Functions:
any(x), all(x)

Less Than: <

Less Than or Equal: <=

Greater Than: >

Greater Than or Equal: >=

Equal To: ==

Not Equal To: ~=

Less Than: <<

Less Than or Equal: <=<=

Greater Than: >>

Greater Than or Equal: >=>=

Equal To: ====

Not Equal To: ~=~=

Logical Functions: Given that xx is a vector, anyany(x) returns 1 if
any element of xx is nonzero and allall(x) returns 11 if all elements of xx
are nonzero.

Prepared by: Panayiotis Andreou, for PBA - UCY

Finally all result to a Boolean expression that takes two values: TRUE (1) and
FALSE (0). Always the comparisons are done element by element and the result
is a scalar/vector/matrix of the same size with elements set to 1 where the
relation is true and elements set to 0 where it is not.

Examples Examples -- Relational and Logical OperatorsRelational and Logical Operators
60

A7=0, A8=1>> A7=allall(D), A8=allall(E)

A5=1, A6=1>> A5=anyany(D), A6=anyany(E)

ans= 1 1 0>> ~D | (D~=E)

ans= 0, A4=1>> A==B & C~=B, A4= -2 & 5

A1= 0, A2= 1, A3= 0 1 0>>A1= ~A, A2= ~B, A3= ~D

ans= 0 0 1>> D==E

ans= 1 0 1>> D>=E

ans=1, 0, 0, 1, 1, 1>>A>1, A>=10, A<5, C<=B, D(2)==B, D(3)~=8
Nothing is displayed>> A=5; B=0; C=-5; D=[-1 0 1]; E=[-2 8 1];

OutputOutputInput Input

Prepared by: Panayiotis Andreou, for PBA - UCY

61

Conditional Statements and LoopsConditional Statements and Loops

The relational and logical operators are very useful when it is
needed to either execute a conditional statement or when a
segment of commands are needed to be executed a number of
times.

A conditional statement is a segment of programming code that
evaluates a statement; if the statement is TRUE then it executes
some commands, otherwise if it is FALSE it runs a bulk of different
programming code:

Two most importantTwo most important: if … end and switch … end

Loops can execute a bulk of commands as long as an expression is
TRUE or for a specific number of time:

Most importantMost important: for .. end, while … end

Prepared by: Panayiotis Andreou, for PBA - UCY

The The if if Conditional ExpressionConditional Expression
62

sales=5000;
if sales<1000

Profit=sales*0.1;
else

Profit=(sales-1000)*0.2+1000*0.1
end

if logical expression
programming code executed if TRUE

else
programming code executed if FALSE

end

flag=0;
if ~flag

disp('Hello')
end

if logical expression
programming code executed if TRUE

end

if (sales>1000 & sales<=2000)
disp('Low Sales ');
Profit=sale*0.1

elseif (sales>2000 & sales<=10000)
disp('Medium Sales ');
Profit=sales*0.15

else
disp('Satisfactory Sales ');
Profit=sales*0.17

end

if logical expression #1
programming code executed if TRUE #1

elseif logical expression #2
programming code executed if TRUE #2

else
programming code executed if FALSE

end

ExampleSyntax

Prepared by: Panayiotis Andreou, for PBA - UCY

The The switch switch Conditional StatementConditional Statement
63

dice=3;
switch (dice)

case 1
disp('One')

case 2
disp('Two')

case 3
disp('Three ')

case 4
disp('Four')

case 5
disp('Five')

otherwise
disp('Six')

end

switch expression

case choice #1

segment of executable programming code

case choice #2

segment of executable programming code

otherwise

segment of executable programming code

end

ExampleSyntax

It executes groups of statements based on the value of a variable or
expression. Only the first matching case is executed. The expression
following the case case should be either a scalar or a string.

Prepared by: Panayiotis Andreou, for PBA - UCY

The The for for LoopLoop
64

for i=1:10

disp(i)

end
sumj=0;

for j=25:-2:-12

sumj=sumj+j

end

for index=first_value:step:last_value

segment of executable programming code

end

ExampleExampleSyntaxSyntax

The colon notation is similar as in the case of the vectors. Actually,
index in the forfor syntax is a vector with n elements with first element
being the first_value and last the last_value. The difference between
the index elements is step. If step is not displayed, then by default is
set to 1.

Prepared by: Panayiotis Andreou, for PBA - UCY

The The while while LoopLoop
65

X=-3;

while X<=10

disp(X)

X=X+1;

end

while expression

segment of executable programming code

end

ExampleExampleSyntaxSyntax

The whilewhile loop repeats a group of statements an indefinite number

of times under control of a loical condition. That is, as long as an

expression is TRUE, then the segment of executable programming

code that is included in the while while statement is executed.

Prepared by: Panayiotis Andreou, for PBA - UCY

66

Prepared by: Panayiotis Andreou, for PBA - UCY

67

Prepared by: Panayiotis Andreou, for PBA - UCY

68

FunctionsFunctions

They are m-files that can accept input arguments and
return output arguments. The name of the m-file and of
the function should be the same.

They operate on variables within their own workspace,
separate from the workspace you access at the Matlab
command prompt.

They are useful for extending the existing Matlab
language for personal applications.

Functions are included in scripts and have their own
calling syntax.

Prepared by: Panayiotis Andreou, for PBA - UCY

69

Function’s StructureFunction’s Structure

A functions has a very specific calling structure
(for example):

Matlab function names have the same
constraints as variable names. The name must
begin with a letter, which may be followed by
any combination of letters, digits, and
underscores.

Prepared by: Panayiotis Andreou, for PBA - UCY

70

Function’s StructureFunction’s Structure

If the filename and the function definition line name are
different, the internal (function) name is ignored. Thus, if
pres_pres_DiagExtractDiagExtract.m.m is the file that defines a function
named: diagonal_extractiondiagonal_extraction, you would invoke the
function by typing in the command window:

“pres_pres_DiagExtractDiagExtract”

Concerning function arguments, if the function has
multiple output values, enclose the output argument list in
square brackets. Input arguments, if present, are enclosed
in parentheses. Use commas to separate multiple inputs or
output arguments. Here's a more complicated example:

“function [Abs, Mean, Std] = function [Abs, Mean, Std] = StatistiSStatistiS(X, Y, Z)(X, Y, Z)”

Prepared by: Panayiotis Andreou, for PBA - UCY

71

Function’s StructureFunction’s Structure

The H1 Line:

The H1 line, so named because it is the first help text
line, is a comment line immediately following the
function definition line. Because it consists of comment
text, the H1 line begins with a percent sign, ‘%’.

This is the first line of text that appears when a user
types helphelp “function_name” at the Matlab prompt.
Further, the lookforlookfor searches and displays only the H1
line of the functions. Because this line provides
important summary information about the m-file, it is
important to make it as descriptive as possible.

Prepared by: Panayiotis Andreou, for PBA - UCY

72

Function’s StructureFunction’s Structure

The Help Text:

You can create online help for your m-files by entering
text on one or more comment lines, beginning with the line
immediately following the H1 line.

When you type help function_name, Matlab displays the
comment lines that appear between the function definition
line and the first non-comment line. The help system ignores
any comment lines that appear after this help block.

Prepared by: Panayiotis Andreou, for PBA - UCY

73

Function’s StructureFunction’s Structure

The Body Text:

The function body contains
all the Matlab code that
performs computations and
assigns values to output
arguments. The statements in
the function body can consist
of function calls, progra-
mming constructs like flow
control and interactive input
and output, calculations, assig-
nments, comments, and blank
lines.

Prepared by: Panayiotis Andreou, for PBA - UCY

74

Function’s StructureFunction’s Structure

• Indicates that is a function• Indicates that is a function

Prepared by: Panayiotis Andreou, for PBA - UCY

75

The BSM Revisited: A The BSM Revisited: A functionfunction

Prepared by: Panayiotis Andreou, for PBA - UCY

76

The BSM Revisited: The The BSM Revisited: The scriptscript

Prepared by: Panayiotis Andreou, for PBA - UCY

77

Loading ASCII Files of DataLoading ASCII Files of Data

Data that is saved in a text format can be loaded in the Matlab’s
workspace with the loadload command. Readable text data do not contain
any text (only numerical data) and all columns and rows are completely
filled. Internet data saved in an ASCII form is similar with the ones
shown on the above spreadsheet. The general calling syntax is:

DataMatrix =load =load ('filename')

Prepared by: Panayiotis Andreou, for PBA - UCY

	An Introductory Course in MATLABwith Financial Case Studies
	What is Matlab?
	What is Matlab?
	Two Important Features
	Starting Up Matlab
	Matlab’s Window: Desktop
	Matlab’s Window: Command Window
	Matlab’s Window: Workspace
	Matlab’s Window: Command History
	Matlab’s Window: Current Directory
	Matlab Variable Names
	Matlab Data Types
	Command Window: Matlab as Calculator
	Math and Assignment Operators
	Examples
	Help Facilities
	Help Facilities
	Help Facilities
	Help Facilities
	Help Facilities
	Examples with Elementary Functions
	Controlling Command Window and Workspace
	The format Command
	Matlab Special Variables
	Command Line Editing
	The Black-Scholes-Merton (BSM) Formula
	Practicing the BSM Formula
	Vectors
	Examples with Vectors
	Examples with Vectors
	Vectors’ Mathematical Operations
	Vectors’ Mathematical Operations
	The BSM Revisited
	Two Dimensional Arrays: Matrices
	Two Dimensional Arrays: Matrices
	Matrices Mathematical Operations
	The BSM Revisited (Sensitivities)
	The BSM Revisited (Sensitivities)
	2D Plots
	2D Plots
	2D Examples
	2D Examples
	2D Examples
	2D Examples
	2D Examples
	2D Examples
	2D Examples
	2D Examples
	3D Line Plots
	3D Surface Graphs
	3D Surface Graphs
	3D Surface Graphs - meshgrid
	3D Surface Graphs - mesh
	3D Surface Graphs - surf
	Matlab Editor/Debugger
	BSM with Editor/Debugger
	What is a Script?
	Relational and Logical Operators
	Examples - Relational and Logical Operators
	Conditional Statements and Loops
	The if Conditional Expression
	The switch Conditional Statement
	The for Loop
	The while Loop
	Functions
	Function’s Structure
	Function’s Structure
	Function’s Structure
	Function’s Structure
	Function’s Structure
	The BSM Revisited: A function
	The BSM Revisited: The script
	Loading ASCII Files of Data

